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Abstract— Information on secondary structures of amino acid  a class of protein secondary structure elements; often as an
residues in proteins provides valuable clues for the predion of  -helix (o), -strand (3) or coil (¢, the remaining type).
their 3-D structure and function. Although numerous computa- Many computational techniques have been proposed in the
tional techniques have been applied to predict protein secmlary . o .
structure (PSS), only limited studies have dealt with disceery literature to solve the PSS pred'Ct'on_ pr(_JbIem. The stesibt .
of logic rules underlying the prediction itself. Such rules Methods are mostly based on the likelihood of each amino
offer interesting links between the prediction model and te acid being one of three types of secondary structures [2],
Updpesﬂéing ?JQ';?QV- l;n addi@ig_n, theﬁ enhanc]?tinterpretahlityt [3]. Neural networks use residues in a local neighborhood
] prediction by providing a degree of transparency to ; ; ; I ; )
the predicting model usually regarded as a black-box. In thé as inputs a.md find an arbltra_ry non-linear mapping [5-8].
paper, we explore the generation and use of C4.5 decision &g The BayeS|an_ approf%h provides a _frame\{vork t_o account
to extract relevant rules from PSS predictions modeled with for non-local interactions among amino acid residues [4],
two-stage support vector machines (TS-SVM). Our approach where the inferences are based on the generalized prdpabili
has produced sizable sets of comprehensible, and often in- distributions incorporating prior probabilities of segme
terpretable, rules underlying the PSS predictions. Moreoer, ot secondary structure elements. The consensus approaches

many of the rules seem to be strongly supported by biological . . o . . .
evidgnce. Further, our approach regsgltedpl?n goodypredic%io combine different classifiers in parallel to achieve a ngl

accuracy, few and usually compact rules, and rules that are Superior predictor [9], [10]. Cuff and Barton employed a
generally of higher confidence levels than those generated/b majority voting scheme to combine predictions from differe

other rule extraction techniques. The proposed rules were techniques [9]. More complex approaches for combining
derived and tested on the RS126 dataset of 126 nonhomologous yifferent methods based on neural networks and linear dis-
globular proteins. crimination [10] have also been studied. Support Vector
Machines (SVM) have been applied to PSS prediction, in

l. INTRODUCTION combination with several binary classifiers [11], [12].

One of the major goals of bioinformatics is to predict 1he accuracy of the single stage approaches to PSS
three-dimensional (3-D) structure of a protein from itsmeni Prediction is insufficient. Rost and Sander proposed the PHD
acid sequence. Information of a protein’s structure presid @PProach using Multi-Layer Perceptrons (MLP) in cascade,
valuable clues to the functions of a protein, vital for masy a With the second stage MLP improved the accuracy of the
pects of living organism such as those of enzymes, hormon@§ediction by capturing the contextual relations among the
and structural material, etc. It also helps in designingesfn S€condary structures from the output of the first stage [5].
drugs for combating disease. Unfortunately, protein stmec e Proposed a two-stage SVM (TS-SVM) for the prediction
prediction problem is a combinatorial optimization prable ©f PSS [13], of relative solvent accessibility [14], and of
which so far has eluded an effective solution because of tgcessible surface area of amino acids [15], which receives
exponential number of potential solutions. One of the aitrre NPUts from PSI-BLAST profiles. These techniques are able
approaches is to first predict protein secondary structuf@ incorporate useful information from multiple sequence

(PSS) assuming a linear representation of the full knovded@/ignments or PSI-BLAST profiles and contextual informa-
of the 3-D structure, and the use of it to predict the 3-BiOn among secondary structures in the prediction scheme.
structure [1]. The goal of secondary structure prediction i Despite the success of many computational approaches,
to assign a pattern of residues in amino acid sequencesngt much research has been done to find what patterns of
amino acid lead to the prediction of PSS. Recently, dte
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a set of rules of PSS prediction, which are more confidentandThe above optimization is simplified by solving the

more evident biologically as compared to rules reported dollowing quadratic programming problem [17]:

far. These rules describe amino acid patterns that are likel

produce specific secondary structures in a particular gante LN N
The input to the TS-SVM is based on the position-specific  max —= Ki(rj,r) a’?af — afck

scoring matrices generated by PSI-BLAST profiles of the of 2 ;; ' Z ! g Y

input amino acid sequence. We use the output of TS-SVM 0 ift;#k

to generate rules for PSS prediction by C4.5 decision trees. Such that ) o} =0 anda} < { o if tj— e @

We extracted two sets of rules for PSS prediction, based on keQr

whether the prediction is purely on amino acid patterns, QhereC; (r;, r;) = ¢1(r;)¢1(r;) denotes the kernel function

uses structural types of residues in the vicinity of prestict andw? = S ¥4, (r;). The input vectors, derived from
= 7 J/" '

output. Furthermore, the rules extracted by our method Wegeyindow of2/; + 1 amino acid residues, are transformed to

more confident and supported by evidences from biologicgl higher dimensional space via the kernel funciién Once

literature than any rules reported so far. Our method redult ;e optimal parameters® are obtained, the discriminant
in an improvement of 2.5% as compared to the best results @ilction of structurek fi

. ¢ for an input vectorr; is given
the RS126 dataset of 126 nonhomologous globular prote|5§
[5], achieved previously by a rule extraction method.

N
Il. METHODS i) = Y abKi(ri,ry) =whei(r,).  (3)
j=1

A. Two-stage SVM The second stage uses another SVM to predict PSS from

Let r = (ry,r2,...,m,) denote the given amino acid the output of the first stage SVM to enhance prediction accu-
sequence wherg € Q2 and(2y is the set of 20 amino acid racy by capturing the contextual dependences of secondary
residues, and = (t1,ts,...t,) denote the corresponding structures, for example3-strands span over at least three
secondary structure sequence where Qp and the set of residues andr-helices composed of at least four residues
secondary structureSr = {«, 8, (}; n is the length of the [5], [13].
sequence. The prediction of PSS sequence is the problenThe input to the second SVM at sitds obtained from a
of finding the optimal mapping from the space @k to  neighbourhoodd! = (d}*, ,....d*, ... d}¥, k€ Qr)
the space of}r . Let v; be the 21-dimensional feature yhere d* = 1/(1 + e—f{“(ri)) and hs is the size of the
vector representing the residug where 20 units are the pejghbourhood on one side. The logistic sigmoid function
values from raw matrices of PSI-BLAST profiles rangings selected to normalize the inputs to the second stage to
from [0, 1] and the remaining unit is used for padding tqp 1]. The input patterns to the second stage are converted
indicate an overlapping end of the sequence [8]. ket o a higher dimensional space by using a mappincand
(Vihys-- -5 Vi, -, Vign, ) be the input pattern to the multi- 5 kernel functioniCo(d}, d}) = ¢2(d})¢2(d]). The outputs
class SVM at sitei of the sequence wher, denotes the in the higher dimensional space are linearly combined by
width of a symmetric neighbourhood window of residues o weight vectorw! to obtain the final prediction. The

the prediction of protein_features from amino acid sequencguadratic programming problem, over all secondary strectu
[13-15]. We use a multi-class SVM proposed by Crammegequences predicted by the first stage in the training stage

and Singer for both stages [17]. [17]. The secondary structural type at site  of input
The first-stage constructs three discriminant functioms fasequence is estimated by

three secondary structures by solving the single optincizat

problem: t; = arg max f5(d}) 4)
1 N where f¥(d}) = wheo(d}) is the discriminant function at
argmin S whwh+4') g the second stage given by as in Eq. (3).
keQr Jj=1

] ] B. Decision Trees
subject to the constraints -
SVMs perform well compared to other statistical or

w? o1(r;) — wh e, (r;) > C? — gjl_ (1) machine learning techniques in predicting protein feature
[15], [16] because of their generalization capabilitiegvN
wheret; is the secondary structural type at siteorrespond- ertheless, SVMs yield a black box model and provide no
ing to input vector;. N is the size of the training data, and biologically meaningful prediction rules [16]. Decisiores,
w?’ andw} are weight vectors corresponding to classes on the other hand, are capable of explicitly describing the
andk, and nature of prediction since they capture rules as prevailing
k_ J 0 ift;=k regularities governing the prediction process. Predictides
%= { 1 ift; #k offer useful guidance for wet-lab experiments and a basis



TABLE |

for advanced inference of biological features correlated t
GENERATED RULES AND ACCURACIES OF DIFFERENT TYPE FOR

specific structures.

Decision tree learning provides a means of approximat-
ing discrete-valued target functions, in which the learned
function is represented by a decision tree. In order t

RULE-BASED CLASSIFIERS ONRS126DATASET.

. - .. Validation C4.5 SVM + C4.5 TS-SVM + C4.5
improve human comprehensibility, learned decision trees R A Rules| A Rules| A Rul
] d as sets Of if-then rules We use C" - un ccuracy ules ccuracy ules ccuracy ules
gre_r_e represente h £ TS-SUM ' | Y1 56.6 148 724 91 74.4 45
feC|5|on tre?j; at the output o ) - ! to ger)e;]ate r;ljes 5 5.0 . 75 2 - e a1
or E’SS prediction. C4.5 was chosen because it 1as shown 4 58.4 169 742 79 746 61
tq give more accurate rules in many apphcatl_ons including 575 166 722 75 73.3 49
bioinformatics problems, _for exa_lmple gene_ratlng automat 5 58.9 163 731 78 73.7 5
rules for protein annotation, mining protein sequences in ¢ 61.6 159 76.0 100 78.2 52
SWISS-PROT, and PSS prediction [16]. It uses the gain - 58.5 167 729 79 73.6 53
ratio criterion based on the information theory to seleet th™ aerage 58.6 61 | 737 83 75.0 29

attribute at the root of the tree and produces suboptimestre
by learning heuristically from input [18]. The importantes
are generated by first creating a decision tree on a training

set, and then pruning the tree by replacing a whole of subtrécessible surface areas of amino acids [15], and gene clas-
with a leaf node if a decision rule establishes a greatéification [19]. The sensitivity parameterand the Gaussian
expected error rate in the subtree than that in the singfe le§ernel parameterr were determined by using the grid-
Rule sets are then derived from writing a rule for each patpearch method [20]. Grid-search provides useful parameter
in the decision tree from the root to a leaf. The leaf-hangstimates for multi-class SVM in a relatively short timeeTh
side is easily built from the label of the nodes and the labeRarameters of the Gaussian kernel and TS-MSVMg as-

of the arcs. 0.0625,02 = 0.0156 andy; = 2 = 0.5, and the neigh-
Let the training set of exemplars for C4.5 decision tree beorhood windowh, = 7, andh, = 3 were experimentally
2. ={(aj,t;): j=1,..., N} where the input at sitg determined for optimal performance. We implemented the
is a; = (d?kh d?ih Vihise..,Vitn,) andt; is the decision tree C4.5 by using Weka software [21]. For C4.5,
j—ha? ) . PR ) I

the confidence factor of 60%was chosen, and an appropriate
alue for the minimum number of instances per leaf within
1, 60] was selected based on cross-validation results.

desired secondary structure whel = 1/(1 + ¢~ /2 (),
The rules are then tested with the same data set for evaluati
of the performance of the algorithm.

[1l. EXPERIMENTS AND RESULTS C. Prediction Accuracies

The present approach was implemented using position- W€ used@s accuracy to measure the percentages of
specific scoring matrices generated by PSI-BLAST as inpufrrectly predicted residues of three types of secondary
and tested on benchmark datasets with seven-fold crosdructures [9]:
validation. The results were compared with other predictio Y ican it
methods and with other results extracting amino acid pagter Q3 = S reon % 100 (5)

leading to the prediction. _ _ _
wheren; is the number of correctly predicted residues and

A. Dataset v is the total number of residues observed of secondary
The set of 126 nonhomologous globular protein chainstructure type. We also used a rule’s confidence to indicate
used in the experiment of Rost and Sander [5] and referrdig accuracy verified on the whole dataset. The confidences
to as the RS126 set, was used to evaluate the accurdgy,Cps, andC, represent the percentages of correctly pre-
of the predictors. The dataset contained 23349 residudisted residues of each type of secondary structure. The
with 32% a-helix, 23% f-strand, and 45% coil. Many occurrence of an amino acid pattern is the frequency of

current generation secondary structure prediction methogresence the amino acid pattern in the training dataset.
have been developed and tested on this dataset. The RS128he performance of secondary structure prediction on
set is available ahttp://mww.compbio.dundee.ac.uk/~www- the RS126 dataset of 126 proteins using TS-MSVM and

jpred/data/pred_res/126_set.html. C4.5 is shown in Table I. The combination of TS-SVM
_ and C4.5 predicted PSS with the highest average accuracy
B. Implementation (75.0%) in comparison to C4.5 alone (58.6%), and to the

The multi-class SVM method was implemented usingombination of SVM with C4.5 (73.7%). As shown in Table
BSVM library which is known to show fast convergencel, the combination of TS-SVM and C4.5 decision trees tends
for large optimization problems [20]. The Gaussian kerndb generate fewer rules but also yields higher accuracy of
Kx,y) = e—olx=yI” showed superior performance overprediction even with a smaller number of rules.
the linear and polynomial kernels for predicting protein Table Il shows an improvement of 2.5% in prediction
secondary structure [13], relative solvent accessibjlig], accuracy of our approach compared to the method of He



TABLE Il TABLE Il
COMPARISON OF PERFORMANCES OF COMBININGS-SVMwITH C4.5 TYPE| RULES EXTRACTED INPSSPREDICTION.
WITH OTHER METHODS FORPSSPREDICTION ONRS126DATASET.

Prediction Rule Occurrence| Confidence
Method Ca Cs C¢  Accuracy(%) «a 1 LxxM 43.4 66.7
Binary SVM + C4.5[16] 728 79.6 69.3 ~725 2 VxXAL 39.1 60.0
SVM + C4.5 76.3 677 742 73.7 3 DVxLG 34.2 100
TS-SVM + C4.5 779 693 753 75.0 4 SVXVG 39.4 100
i 5 WVXIG 43.1 100
6 RxVxI 32.7 100
7 TVTV 44.6 100
et al. produced on RS126 by combining single-stage binary 8 Talv 451 66.7
SVM with C4.5. Futhermore, on the RS126 set, accuracy ) AVP 292 100
Q)3 after combining TS-MSVM with C4.5 approach on the ¢ 10 | KXo Cxooaacl 441 78.4
PSI-BLAST profiles was significantly higher than the results 11 MxP 55.8 72.2
produced by NNSSP (72.7%) [3], PREDATOR (703%) [22], 12 DxY 50.1 65.2

DSC (71.1%) [23], the refined neural network (71.3%) [6],
Jpred (74.8%) [9], PHD (70.8%) [5], and binary SVM

(71.2%) [11]. . . .
protein’s structural stability [24]. Experimental and ¢het-

D. Extracted Rules @cal_ studies on qgtural a_nd synt_hetic_ pep_tides gnd proteins
indicate that individual side chains differ in their potaiht
Logical rules from amino acid sequences were decodeff helix-forming. Four aliphatic side chains occur in the
using the SVM-predicted output values [16]. We classifiedtandard complement of amino acids: L and A are helix
the rules into two categories, types | and II, based on wiethgtapilizing whereas V and | are weakly destabilizing halice
TS-SVM already predicted the specific secondary structurgs]. From position-specific amino acid preferencesain
The rules are shown in Tables Ill and IV. The bold amintelices [26], there is a peak preference for hydrophobic
acid indicates the position of the secondary structure. Thenino acids L and V in positions N4 (N-cap + 4) and C3
symbol "X’ indicates that a 'do not care’ condition for the(c_cap - 3) and M in position C4 (C-cap - 4). Helix boundary
amino acid in that site. residues (the first and last helical residues) are calle@N-c
The occurrences of such regularities and the confideng@d C-cap at the N- and C-terminus, respectively. Positions
of the rules are given in second and third column of th@l4 and C4 are underneath the polypeptide chain leading the
tables, respectively. The co-occurrences of such pattéiths  helix, and also usually on its interior face as the chain at
a specific secondary structure were the basis of predicfion @ach end must connect to the rest of the protein [26].
PSS in GOR methods [2]. As can be seen from all the tables,As seen from Table Ill, pattern®VXLG, SVXVG,
the presented method resulted in more accurate predictionsyxiG, RxVxI, and TVTV, predict 5-strands with 100%
than those based on linear associations in the GOR methednfidence. Rule 3 shows that if Aspartic acid (D, Asp)
This is because of the complex non-linear mapping provided present at a site and Valine (V, Val), Leucine (L, Leu),
by TS-SVM and extraction of relevant rules transformingand Glycine (G, Gly) at one, three, four sites downstream,
patterns of amino acids to secondary structures. To show thgspectively, then the secondary structure at the site will
usefulness and biological relevance of the rules, we iné¢rp be a s-strand. This rule suggests that negatively charged
some of the rules derived by bringing evidences from thghydrophilic) amino acid D at the local site and non-polar R
literature. group (hydrophobic) amino acids V, L, and G downstream,
1) Type | Rules: Type | rules extracted by the presentedprove to be sheet stabilizing. Colloc’h and Cohen focused
method are shown in Table lll. Listed are the rules with contheir attention on the conformational and structural proes
fidence above 60%, indicating amino acid patterns leading tf residues that initiate or terminatefastrand [27] and are
the prediction of specific protein secondary structures Threferred to ass3-breakers because of their role in breaking
first two rules indicate that the method predictsaelix  the regular geometric structure of the strand. They found
when patternd. xxM and VxAL are present, with 66.7% a preference for D, T, and R as the N-termirabreaker
and 60.0% confidence, respectively. As seen, Leucine (Bnd G and S as the C-terminalbreaker. Interestingly, our
Leu) and Methionine (M, Met) are present at three siteprevious work found that hydrophobic amino acids V and |
downstream of the site. Amino acids L and M are nonstrongly tend to be3-strand [13]. Moreover, in rules 7 and
polar R group (hydrophobic) and tend to formhelix, and 8 in Table IIl, the weakly hydrophilic amino acid T is two
their presence at three sites downstream proves to be helgites upstream, the non-polar R group (hydrophobic) amino
stabilizing. acid V is one site upstream, then another non-polar R group
It has been previously reported that L-L, L-V, L-l, F-M, (hydrophobic) amino acids | or weakly hydrophilic amino
and L-M pairs at the local site and occurs commonly threacid T is the local site, and finally another hydrophobic
and four sites downstream ia-helices and contribute to amino acid V. If this forms a sheet, then the two hydrophobic



TABLE IV

amino acids C and V moves in the same direction (possibly TvpE Il RULES EXTRACTED INPSSPREDICTION

into the core of the protein), and the hydrophilic amino acid
T could then face the solvent [16].

As seen in rule 9 in Table IlI, pattern\& predicts a coil Prediction Rule Occurrence| Confidence
with 100% confidence. Amino acid Proline (P, Pro) invari- 13 GxxY 459 100
ably shows a high frequency of occurrence at neighboring 14 MxxS 5Ly 100
positions of all coil sites. Given the unique structuralttea 15 G 39.2 100
of amino acid P where its side-chain is bonded to the main- 161 DxooooxY 9.7 100
chain N atom, the conformation of the polypeptide backbone i; Kpé'\b(l :ii ;:c;
is often perturbed by the presence of amino acid P and, o XX ‘ ‘

- L : 19 DP 47.3 93.3
therefore, is induced to form coils in proteins [28]. Theerul 00 DX 11 917
12 in Table 11l shows that if Aspartic acid (D, Asp) is present ' '

; . X ) 21 SPxD 44.3 89.3

at a site with Tyrosine (Y, Tyr) two sites downstream, then
- . X ! ) . 22 SxexK 51.0 83.3

a colil is predicted with with 65.2% confidence. The amino

. . . . . 23 NXxxxP 45.7 77.8

acid D in negatively charged R group (hydrophilic) and Y in
. . . . 24 GXxxxxK 43.9 100

aromatic R group (hydrophobic) tend to create coil, spapnin
. . . 25 TxxxxxR 44.7 100
over at least three adjacent residues [13], and making the 26 | xxPxoooR 128 100
likelihood of a presence of the secondary structure stnonge 97 «GN 42'1 100
Crasto and Feng_ found that_amlno acid D has a m.o.derate 28 GrxocxF 410 100
pre_ferenc_e for caoll conforman_on _a_nd the cpll _propgnsm_és 29 AxxMxx 422 100
amino aC|_ds Y and P have S|gn|f|car_1t var|§1t|0ns in coils of 30 | AxxMxxxG 471 03.3
different sizes [28]. Also, charged amino acids D and K have 3 31 IXE 16.8 91.7
lower freql_Jenmes of occurrence in the interior than in the 32 ExY 420 89.3
surface coils. . _ 33| HxoN 54.0 86.1

2) Typell Rules: Table IV lists type Il rules or the amino 34 | xoxMxR 41.6 85.7
acid patterns that enhance the prediction of a secondary 35 L XXXXA 44.0 85.3
structure by C4.5 if the presence of the secondary structure 36 XXXXXXC 54.5 835
is already known by TS-SVM prediction. The decision tree 37 AxxxXY X 45.2 83.3
predicts am-helix with 100% confidence for pattensx&y, 38 XXXXM 52.6 82.9
MxxS, GxxP, DxxxxxxY, and PxN if TS-SVM predicts the 39 GP 76.6 93.7
site to be armx-helix. The accuracy of prediction af-helices 40 XSV 58.1 84.7
by TS-SVM stands at 73.1%. Therefore, the above rule can 41 XXXT 67.1 84.3
be given a different interpretation: when the above amino 42 SxI 58.9 83.3
acid patterns appear, then the surrounding patterns ofcamin 43 | xRxoooxxl 54.6 82.4
acid makes the confidence of prediction to be 100%. ¢ a4 xxD 68.1 82.3

For illustration, consider rule 21 in Table IV, which 45 | GXXXXXXXXXG 54.1 81.7
indicates that if hydrophilic amino acid Serine (S, Ser) is 46 IxxM 56.9 81.1
at one site upstream, Proline (P, Pro) is present at the local 47 MxxY 59.8 80.0
site, Aspartic acid (D, Asp) is at two sites downstream, 48 XXXXG 60.9 78.6
and TS-SVM predicts the local site to be anhelix, then 49 L xxxxxC 55.8 75.0

the pattern 8xD is present with 89.3% confidence. In this
pattern, hydrophilic amino acid S followed the hydrophobic
amino acid P and another hydrophilic amino acid D g

two sites downstream prove to be helix stabilizing if the{he presence of the amino acids with the known secondary

. : X o . . structure type at the local site improves the confidenceef th
amino acid P forms aa-helix. From position-specific amino -

. . ; ...~ secondary structure prediction.
acid preferences im-helices [26], the N-cap position is
dominated by amino acid S. This is because when amino
acid S does occur ia-helix, its OH often forms a second
H bond to a backbone CO on the previous helical turn. The Following the predictions made by TS-SVM approach,
preference distribution for amino acid P indicated thatreami we used C4.5 decision trees to generate prediction rules for
acid P in the first turn are almost exclusively in the NIPSS prediction. As manifested by experiments, we were able
position (the first residue after the N-cap) [26]. This rulego extract two types of rules, which previous literature and
concurs with the findings of Richardson et al. that aminphysiochemical properties of amino acids seem to support.
acid P prefers to be a helix-initiator than a helix-brea&][ The number of rules derived was relatively small and they
Also, there is a peak of preference for hydrophilic aminshowed higher confidence levels compared to those derived
acid D in positions N2 and N3 (the second and third residugy other approaches. To generate a set of prevailing rules
after the N-cap). Moreover, results in Table IV indicatetthathat can also be interpreted, we used empirically preset

IV. DISCUSSION
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