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Abstract—Secondary structure prediction is an effective
approach in deducing the three dimensional structure and
functions of proteins. Although the multilayer neural network
is currently used for the prediction, appropriate determination
of the network size is yet an important factor in improving the
performance of the network. In this work, two systematic
approaches for pruning the oversized multilayer perceptron
neural networks (MLP-NN) are proposed to determine the
optimum size of the hidden layer. Using the RS126 dataset in
seven-fold cross-validation, the percentage accuracy of the
prediction reaches to 75.38.

I. INTRODUCTION

ROTEINS are large complex molecules that are made up

by smaller subunits called amino acids. Chemical
properties distinguishing the 20 standard amino acids cause
the protein chains to fold up into specific three dimensional
(3D) structures defining their particular functions in the cell.
Secondary structure is the locally ordered structure created
by hydrogen bonding within the protein backbone [1].
Experimental methods, such as X-ray crystallography and
nuclear magnetic resonance spectroscopy that are used to
determine the protein structure, are time consuming, labor
expensive, and not applicable to all proteins [2]. These
prohibitive costs may increase the gap between the number
of known protein sequences and the number of known
structures. Hence, the prediction of a protein structure from
the amino acids sequence, initiated in late 1970s, is yet an
important computational goal.

Computational methods usually perform the prediction of
the 3D structure with an intermediate step of predicting the
secondary structure. The early approaches were only based
on the primary sequence information and they were able to
predict three secondary structure types with an accuracy of
less than 60% [3]. The next generation of the methods
considered the information of neighboring amino acids
through sliding-window computations [1]. These methods
use pattern recognition and statistical characteristics based
on Bayesian inference and decision rules, hidden Markov
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models, support vector machines, and neural networks [1]
and they can achieve to a maximum accuracy of about 80%
[4].

Nowadays, using neural networks is a promising approach
in the secondary structure prediction [5]. Following the
pioneering work of Qian and Sejnowski [3], many new
computational techniques involving neural networks for the
prediction of proteins secondary structure were introduced
an average prediction accuracy that varies from 70 to 80%.
In order to improve the prediction accuracy, several studies
have been applied sophisticated network structures such as
hierarchical [4], cascade [6], recurrent [7], bidirectional [8],
and multiple experts networks [9]. Others combined
additional structural information in the network input with
the amino acid composition [10], interaction graphs [11],
tertiary [12] and secondary [13] structure information,
probabilities of the residues in the protein core or on the
protein surface [14], multiple sequence alignment profiles
[15], and position specific score matrices (PSSM) [16].

All in all, neural networks have some particular
difficulties in defining the network architecture and structure
as well as training algorithms. It is not a priori obvious what
size of the network is the best. Small networks generalize
properly, however, they might not be able to fully learn the
data. On the other hand, the large ones learn slowly and
prone to be so sensitive to the initial condition and learning
parameters [17].

The main purpose of the present work is determining the
optimum number of hidden layer nodes in the feed forward
neural network, using pruning algorithms to eventually
improve the accuracy of the prediction. The PSSM profiles
of the RS126 dataset are applied as the input to sequence-to-
structure network. The network with a larger size than that is
required is initially trained. The optimum size of the hidden
layer is then defined using two methods. In the first pruning
method, the redundant nodes are removed based on the
network training error. In the second method, the correlated
neurons are unified using Sietsma and Dow approach. After
this stage, the network output is fed the structure-to-structure
network as proposed in the profile network from Heidelberg
(PHD) method [15].

The organization of the paper is as follows. In Section II,
the structural change and development of the neural network
is reviewed. The employed dataset, experimental
preparation, and evaluation method are described in Section
III. Section IV explains the proposed pruning algorithms for
the neural network classifier architecture. The experimental
results are discussed in Section V, and finally, the



conclusions are drawn in section V1.

II. STRUCTURAL CHANGE AND DEVELOPMENT IN NEURAL
NETWORKS

In general, the number of hidden units, or equivalently
weights, that are needed to produce a reasonable
approximation to the data is not clear a priori. Guessing an
appropriate number is the most usual answer but, of course,
not necessarily the best. Another common solution is to try
out several network sizes and select the most promising one
[17]. Neither of these methods is very principled.
Meanwhile, neurons meiosis, immigration, death and adhere
may occur in developmental neurobiology that are known as
progressive changes [18]. In this regard, the dynamical
connectionist artificial neural networks are developed based
on processor units and connections removing, pruning and
growing algorithms [19]. In the growing networks such as
the meiosis networks, generally, a very small size network is
trained, and iteratively, the complementary units and weights
are added. This is accomplished by using the neurons
weights variances to create hidden nodes dynamically, the
back propagated error to increase hidden neurons, and
network training error to modify the neurons weights [17].

An alternative technique to the growing networks is to
start with a relatively large network and then remove
weights to fulfill optimal network architecture. Exploring the
less important weights is a difficult issue for which several
heuristic approaches have been proposed [17]-[19]. Among
them, skeletonization pruning method nullifies every weight
and examines the resulting changes in the network training
error individually [19]. This technique stems from the
observation of the functional importance variation of the
units after training. The results are monitored during the
removal of the unit and its connections to explore whether a
unit is functionally important. The relevance of a unit can
then be defined in terms of the difference in the network
training error. If the error discrepancy is larger than a priori
set threshold then the unit functionality is useful and it is
retained, otherwise, the effect of unit is negligible and it is
removed.

Considering the omission types of redundant nodes, the
pruning methods are categorized into two types. Those
which evaluate the sensibility of the error function to
truncate the elements with less influence are known as the
methods of sensibility. They modify the network once the
training is done, the sensibility is calculated, and based on
the value of the weights, the redundant nodes are cut away.
The other pruning type performs the removing after adding a
penalization term to minimize the function. This
accommodates the network for choosing efficient solutions
[17].

In addition to the mentioned processes, there exist
techniques with particular methodologies. Sietsma and Dow
[20] described an interactive method on which a designer
inspects a trained network and decides which nodes to
eliminate. The idea is based on removing the

noncontributing nodes. If the output of a wunit is
approximately constant for the training patterns, then it is
acting like an additional bias to all nodes. As a result,
unification of nodes with highly correlated outputs during
the training can serve as an alternative approach to prune the
network. In this paper, the Sietsma removing algorithm is
applied to reduce the network size as well as, skeletonization
pruning method.

III. DATA PREPARATION

A. Secondary Structure Assignment

The assignment of the protein secondary structure can be
performed by three programs, namely the DSSP, STRIDE
and DEFINE [21]. In this work, the define secondary
structure of proteins (DSSP) assignment is adopted.
According to this method the secondary structure of each
residue classifies into 8 classes, namely H (a-helix), G (310-
helix), I (z-helix), B (isolated p-bridge), E (extended p-
strand), T (hydrogen bonded turn), S (bend), and C (not
HBEGIT or S). The prediction methods are normally
assessed for only 3 standard classes associated with a-helix
(H), p-strands (E), and coils (C). Hence, the 8 classes are
reduced to 3 [1]. There are four main methods to perform the
reduction process:

H {H, G},E {E},C {S, T, B, I, C} )
H {H},E {E},C {G,S, T, B, I, C} D)
H{H,G,I},E {E,B},C {S, T, C} (I1)
H {H, G},E {E,B},C{S, T, I, C} av)

Here, the method (IV), so-called the critical assessment of
techniques for protein structure prediction (CASP), is
adapted. It is considered as the strictest criterion and usually
results in lower prediction accuracy than the other methods
[21]. In order to encode the secondary structure classes for
the classifier, the three units are assumed as binary values
according to the following allocation

H=[1,0,0] E=[0,1,0] C=[0,0,1].

B. RS126 Dataset

The RS126 main dataset are applied to develop and test
the predictor. It contains 126 non-homologous globular
proteins according to the definition given by Rost and
Sandar [15]. They applied percentage identity to measure the
homology and defined non-homologous to signify that no
two proteins in the dataset share more than 25% sequence
identity over a length of more than 80% residues [15].
Numerous protein secondary structure prediction methods
are being developed and tested on the RS126 dataset. The
dataset comprises 24395 amino acids with secondary
structure extent 32% o—helix, 21% B—strand and 47% coil.

C. Evaluation Method

With seven-fold cross-validation approximately 1/7 of the
proteins in the dataset are left out for testing and the rest is



used for training. This procedure is fulfilled cyclically seven
times and the prediction result is a mean over seven different
testing sets. In order to avoid the selection of extremely
biased partitions that may give inauthentic prediction
accuracy, the RS126 set is partitioned into seven subsets
with equal size and similar content from each type of the
secondary structures. Several different random partitions of
the RS126 set are tested. The partition that distributes the
three secondary structure types (H, E, and C) most evenly is
selected finally.

The percentage of residues predicted correctly in the
conformational state k is given by

0, = %100 (1)

k

where & represents H, E and C regions in the native protein
structure as determined experimentally, 7, is the number of
correctly predicted residues in the state &, and N, is the total
number of residues in the conformational state k in the test
set. The percentage of the total residues correctly identified
in the three classes is obtained by

=MXIOO 2)

T
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where N7 is the total number of residues in the proteins set
and Ny, Ng N indicate the number of correctly classified
amino acids belonging to the corresponding classes.

D. Position-Specific Score Matrices (PSSM)

Prediction based on a multiple alignment profile of
protein sequences instead of a single sequence has long been
recognized as a way to improve the prediction accuracy [15],
[16]. There are two kinds of alignment profiles: the multiple
sequence alignment profiles (MSAP) and the position-
specific score matrices (PSSM). In this paper, the PSSM on
the RS126 set are utilized. The profile matrix has 20xL
elements, where L is the length of the target sequence, and
each element represents the occurrence frequencies of the i-
th amino acid in the j-th position, as expounded in [16]. The
elements are typically in the range = 7 and normalized
between 0 and 1 using the standard logistic function

f(x)= Q)

l+e™*
where x is the raw profile matrix value.

IV. CLASSIFIER ARCHITECTURE

A. Sequence-to-Structure Network

The supervised classifier is based on a multilayer
perceptron (MLP) network with only one hidden layer. It
associates the primary structure with the secondary one, only

considering a PSSM profile of single amino acid and its
neighbors. Through the interactions between the constituent
amino acids along a protein chain, the residue neighbors
affect the relevant secondary structure. Thus, using the
sliding window on the amino acids sequence and feeding the
classifier are the most common solution to improve the
prediction accuracy. There are no specific rules to specify
the length of the window. It has been shown the best choice
can be found among the odd numbers between 9 and 51 [5].

After selecting the neighboring amino acids, the pattern
vector for the i-th residue is built. It is necessary to identify
the rows of the PSSM matrix of neighboring amino acids
and subsequently to lexicographically concatenate them in
the i-th residue pattern vector. According to the RS126
dataset the optimum length of window is 13 residues [15],
[22]. Hence, the network training parameters are adjusted
similar to Rost and Sander method [15]. As a result, the
pattern vector is made up of Ny =13x20=260 elements.
Indeed, 13 rows of the PSSM matrix containing 20 elements
are concatenated. The window slides along the protein chain
and the patterns are computed for all of the amino acids of
the sequence. Null rows are considered for the PSSM as long
as the window is on the head or end of the chain.

The network output vector representing the 3 secondary
structure classes is obtained by

2= WL WL, X] + 001+ 0,) @

where X is the network input vector with length Ny and
w ), denotes the weight associated with the j-th unit of X

to the A-th unit of the hidden layer vector ¥ with length Ny.
The coefficient ", is the connection weight between the

h-th unit of hidden layer and the i-th unit of the network
output. The neurons activation function f is logistic. Bias
weights ¢, and @, are added to the input and hidden layers,

respectively. The desired output is the central residue,
namely the seventh entry of the input window, class. The
secondary structure at position ¢ is predicted to be C; if
Z," > Z/' forall j # i, where C,e{H,E,C}.

The number of neurons of the hidden layer is an important
issue in gaining the optimum performance of the classifier.
A systematic variation of the hidden nodes number has not
yet been studied. According to the pervious studies, some
authors tried out several network sizes and selected the size
that gives the desired accuracy [23]. The number of
exploited hidden nodes is varying in the range of 30 to 80
[15], [22], [23]. Thus, an oversized network with Ny =100
nodes in the hidden layer is trained on the seven training
groups of the dataset.

The back propagation algorithm is applied to train the
fully-connected feed-forward network, using both a constant
learning rate and a momentum term. Training is terminated
when either the error reduces to less than a priori set
threshold or the training epochs reach an upper limit. The



threshold value is set 0.1 and the maximum number of

training epochs is adjusted to 2000 epochs. At each training

epoch, the samples of the training set are fed in randomly

changing orders. The training error for the first group of the

dataset is illustrated in Fig. 1. Specifically, the following

settings are used:

e A constant learning rate is 0.05.

e A momentum parameter is adjusted 0.5.

o The activation functions are logistic function sigmoid in
[0, 1].

e Every parameter is initialized with small random values
within [-0.1, 0.1] interval.
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Fig. 1. Training and test errors of the oversized network for the first group
of the input data (A). The error on the test set starts increasing after some
epochs since the network is overtrained.

B. Pruning Algorithms

The protein secondary structure prediction is greatly prone
to overtraining. Fig. 1 demonstrates the overtraining during
the oversized network training. In the early stage of training
the error on both training and test sets tends to decrease as
the network is able to generalize from the examples to the
underlying classes. However, the error on the test set begins
to increase after some epochs, whereas the network starts to
adapt artifacts in the training data. The hidden layer size in
the MLP networks plays an important role in preventing the
overtraining. Hence, determining the number of hidden
nodes with the systematic approaches is proposed.

The two pruning methods are applied to accomplish the
best size of the network. The node removing in the first
pruning algorithm (skeletonization) is based on the network
relevance to the hidden neurons. The effect of any node on
the training error is considered via evaluation of the trained
network with elimination of the relevant node. The total
error on the training data is calculated by

E:Z%(zt—Dt)2 )

where Z, is the actual output of the i-th residue in training
data, D, is the target output vector (the associated class of
Z,), and P is the number of training patterns. The node is

retained if the error increases more than the set threshold
0.01. As a result, the weights with less relevance are
truncated and the hidden layer is modified. The algorithms
iterates 100 times for inspecting all of the hidden nodes.

In the second pruning technique, the noncontributing
nodes in hidden layer are removed according to Sietsma and
Dow method [20]. The unit with approximately constant
output or a mimic output of another unit across the training
set can be omitted. If the output of a unit is constant, then it
is acting like an additional bias. Therefore, the average
output of the unit is added to the bias node after removing.
The bias weight modification moves the hyper planes place
in the feature space and changes the classification result.
Whenever, this approach is applied to prune the network, the
classification improvement is insignificant. Thus, the
alternative method that is unification of units with identical
outputs is employed.

Two nodes are combined whenever the distance between
the corresponding outputs is less than the constant threshold
which is assigned 0.05. The hidden layer establishes two
connections with the input layer (Wy.y) as well as the output
layer (Wy.z). Thus, the associated neurons of the
approximated analogous nodes are correlated and considered
as a single neuron during the unification. The final weight of
obtained neuron is substituted by average of the weights.
The examination is repeated during the pruning to gain
reduction in the network size.

The other main advantage of the neural network pruning
is defining the optimum size of the network. Hence, the
average of obtained hidden layer sizes on the 7 groups of
training data from the two employed pruning methods are
applied for defining the proper classifiers. The secondary
structure prediction is then tested using two fully-connected
feed-forward neural networks with two differences sizes.
The sliding window with length of 13 on amino acids
sequences is fed into the networks. The networks training
parameters such as constant learning rate and momentum
term are adjusted similar to the prior networks. At each
training epoch, the training patterns are fed into the network
in randomly changing orders and the training is terminated
when either the training epochs reach 1000 or the error
reduces to less than 0.2.

C. Structure-to-Structure Network

The first network regards the dependency of a residue and
its secondary structure using 6 residue neighbors of central
amino acid in the 13 unit wide window. The consecutive
secondary structures are correlated, e.g., a-helix consisting
of at least 3 consecutive patterns [1]. According to the long
range correlation between the types of secondary structures
along the protein chain, a second level network is exploited
to take into account the neighboring effects. The input of the
networks is fed using a sliding window with length 17. In
other words, the network acts as a filter that processes the
output of the first networks to enhance the prediction
accuracy [15]. Therefore, the one hidden layer network is



trained by the actual first network output Z; in (4), together
with the 8 neighboring vectors of Z, as the input and D, as
the desired output. The constant learning rate and
momentum term are similar to those of the first network.
The network is trained using back propagation algorithm.
The training is terminated at the 1000™ epoch. Fig.2
presents the training error of the network for the first group
of the training dataset when the network is fed by the output
of the oversized network.
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Fig. 2. Training error of the structure-to-structure network for the first
group of the input data (A).

V. RESULTS AND DISCUSSION

The secondary structures of the RS126 dataset are
predicted through 6 diverse neural networks using 7-fold
cross-validation. The one hidden layer feed-forward neural
network with 100 nodes in the hidden layer is considered as
the oversized network (OS-Net). The network maps the
amino acids sequences to the secondary structures using
back-propagation training algorithms. Structure-to-structure
network (SS-Net) is applied to filter the output of the first
networks. The accuracy of prediction for three secondary
structure classes (Qy, O, Oc) and the total accuracy (Q;),
referring to (1) and (2), are given in Table I. As expected,
the accuracy of prediction indicated by Q; improves using
the SS-Net by considering the interaction between the
secondary structures. Particularly, the prediction accuracy of
the S-strands type (Qf) increases considerably, since the long
range interaction between secondary structures is more
effective in S-strands than a-helix and coils.

TABLE I
PREDICTION ACCURACY OF THE OVERSIZED AND STRUCTURE-TO-
STRUCTURE NET
Type of Net Qu Qe Qc Qs
OS-Net 74.58 65.51 72.64 71.09
SS-Net 74.83 66.53 72.76 71.82

Regarding the effect of the each node on the training
error, the OS-Net is pruned with skeletonization pruning
method and the units with insignificant influence are
removed. The algorithm is performed on all networks trained
by the 7 groups of the dataset {A, B, C, D, E, F, G}. The

achieved size of the hidden layer for the data groups and the
prediction accuracy after removing are presented in Table II.
The OS-Net is also pruned using the second pruning
algorithm based on the Sietsma and Dow method. The
correlated weights are adhered and the optimum size of the
networks is attained. The numbers of hidden nodes for all
training datasets and the relevant QO; have been tabulated in
Table III.

TABLE II
FIRST PRUNING METHOD FOR THE 7 GROUPS OF THE DATASET
Data | B c D E F G
Group
Num. of | 85 83 79 85 77 81
Nodes
Q3 69.87 | 78.57 | 78.06 | 72.38 | 77.37 | 73.93 | 69.94
TABLE III
SECOND PRUNING METHOD FOR THE 7 GROUPS OF THE DATASET
Data A B c D E F | G
Group
Num. of | 77 74 71 75 71 73
Nodes
Q3 68.93 | 78.13 | 78.67 | 71.94 | 77.86 | 73.26 | 69.2

During network training, the weights are modified based
on the back-propagation rule in order to decrease the error
on training patterns. When the network is tested on different
dataset, it generalizes the training data to the test data. The
network with excessive nodes in hidden layer may learn
more details from the training data and the training error
decreases sufficiently, however, the test error starts
increasing after some training epochs. The network is not
able to generalize and the overtraining is accrued. However,
by pruning the hidden layer the overtraining is avoided. The
reported prediction accuracies in Table IV demonstrate the
consequence of removing less important nodes in increasing
the accuracy.

TABLE IV
PREDICTION ACCURACY OBTAINED USING THE PRUNING ALGORITHMS
. Ave. Qs
Pruning | o des Qn Qe Qc Q3 SS-Net
Method1 81 75.89 68.75 73.71 74.3 75.24
Method2 73 75.52 68.89 73.1 73.99 74.76

The SS-Net improves the accuracy whenever it is applied
after two pruning methods. Using the first pruning method
the highest Qs = 74.3% and 75.24% are attained respectively
from the pruned sequence-to-structure and the structure-to-
structure networks as shown in Fig. 3.

The optimum size of the hidden layer is defined by
averaging on the obtained number of hidden nodes for the 7
groups of the dataset. Finally, 81 and 73 hidden layer nodes
are obtained respectively for the first and the second pruning
methods. The two feed-forward neural networks with one
hidden layer are applied for classification. The first network
(Netl) with 81 and the second network (Net2) with 73 nodes
in the hidden layer are trained by the 7 groups of the dataset.
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Fig. 3. The prediction accuracy of the six proposed networks; the structure-
to-structure network for the first pruning method achieves the highest
classification performance.

The outputs of the networks are then optimized using the
SS-Net with the prior settings. The prediction accuracy of
three secondary structure types (Qn, O, Oc) and the total
accuracy (Q;) are given in Table V. Considering the final
accuracy of the designed network (75.38%) the results are
comparable with Q; of the well-known predictors such as
those reported by Jpred (74.8%) [24] and SSpro (78.1%)
[25].

TABLE V
PREDICTION ACCURACY OF USING THE NETWORKS WITH 73 AND 81 NODES
IN HIDDEN LAYER AND THE STRUCTURE-TO-STRUCTURE NET

Type of Net Qn Qe Qc Qs
Netl 71.04 | 72.84 | 7815 | 74.25
SS-Netl 7193 | 7447 | 78.82 | 75.38
Net2 71.19 | 7276 | 77.68 | 73.84
SS-Net2 7223 | 7419 | 7839 | 75.06

VI. CONCLUSION

Pruning algorithms were proposed to prevent the
overtraining problem in the protein secondary structure
classification by the neural networks approach. Using the
pruning methods, the optimum size of the neural network is
defined in a systematic way. The applied removing methods,
particularly the skeletonization method based on the effect
of every node on the training error, improve the classifier
performance in practice. The accuracy of prediction is
increased using the structure-to-structure network. The
experimental results reveal that the prediction accuracy
reaches to a level comparable with the other methods.

REFERENCES

[1] P. Baldi and S. Brunak, Bioinformatics: The machine learning
approach, Cambridge, MA: MIT Press, Second Edt., 2001, ch. 1, 4, 6.

[2] Z. Aydin and Y. Altunbasak, "A signal processing application in
Genomic research: Protein secondary structure prediction," [EEE
Signal Processing Mag., vol. 23, no. 4, pp. 128-131, 2006.

[31 N. Qian and T. Sejnowski, "Predicting the secondary structure of
globular proteins using neural network models," J. Mol. Biol.,
vol. 202, pp. 865-884, 1988.

(4]

[1

—

[12

—

[13]

[14]

[15]

[16

[}

[17]

(18]

[19]

[20

=

(21]

[22]

(23]

[24]

[25

[k}

[26]

L. Han, J. Cuil, H. Lin, Z. Ji, Z. Cao,Y. Li, and Y. Chen, "Recent
progresses in the application of machine learning approach for
predicting protein functional class independent of sequence
similarity," Proteomics, vol. 6, pp. 4023—4037, 2006.

B. Rost, "Neural networks predict protein structure: hype or hit?,"
Artificial Intelligence and Heuristic Methods in Bioinformatics, 2003.

J. Chen and N. Chaudhari, "Cascaded bidirectional recurrent neural
networks for protein secondary structure prediction,” [EEE Trans.
Computational Biology and Bioinformatics, vol. 4, no. 4,2007.

A. Ceronia, P. Frasconia, and G. Pollastri, "Learning protein
secondary structure from sequential and relational data," Neural
Networks, vol. 18, pp. 1029-1039, 2005.

J. Chen and N. Chaudhari, "Bidirectional segmented-memory
recurrent neural network for protein secondary structure prediction,"
Soft Computing, vol. 10, pp. 315-324, 2006.

S. Sivan, O. Filo, and H. Siegelmann, "Application of expert networks
for predicting proteins secondary structure," Biomolecular
Engineering, vol. 24, pp. 237-243, 2007.

J. Ruan, K. Wang, J. Yang, L. Kurgan, and K. Cios, "Highly accurate
and consistent method for prediction of helix and strand content from
primary protein sequences," Artificial Intelligence in Medicine,
vol. 35, pp. 19-35, 2005.

J. Cheng and P. Baldi, "Three-stage prediction of protein B-sheets by
neural networks, alignments and graph algorithms," Bioinformatics,
vol. 21 suppl. 1, pp. 75-84, 2005.

G. Zhang, D. Huang, Y. Zhu, and Y. Li, "Improving protein secondary
structure prediction by using the residue conformational classes,"
Pattern Recognition Letters, vol. 26, pp. 2346-2352, 2005.

S. Costantini, G. Colonna, and A. Facchiano, "Amino acid
propensities for secondary structures are influenced by the protein
structural  class,"  Biochemical —and  Biophysical — Research
Communications, vol. 342, pp. 441-451, 2006.

G. Zhang, D. Huang, and H. Qiang Wang, "Protein secondary
structure prediction based on the amino acids conformational and
neural network technique," /EEE ICASSP, Canada, Montreal, May
2004.

B. Rost and C. Sander, "Prediction of protein secondary structure at
better than 70% accuracy," J. Mol. Biol., vol. 232, pp. 584-599, 1993.

D. Jones, "Protein secondary structure prediction based on position-
specific scoring matrices," J. Mol. Biol., vol. 292, 1999.

R. Reed, "Pruning algorithms- a survey," IEEE Trans. Neural
Networks, vol. 4, no. 7, pp. 740-747, 1993.

D. Pures, L. White, and R. Riddle, "Is neural development
Darwinian?," Trends in neurosciences, vol. 19, no. 11, pp. 460-464,
1996.

P. Quinlan, "Structural change and development in real and artificial
neural networks," Neural Networks, vol. 11, no. 4, pp. 577-599, 1998.

J. Sietsma and R. Dow, "Creating artificial neural networks that
generalize," Neural Networks, vol. 4, pp. 67-79, 1991.

J. Cuff and G. Barton, "Evaluation and improvement of multiple
sequence methods for protein secondary structure prediction,"
PROTEINS: Structure, Function, and Genetics, vol. 34, pp. 508-519,
1999.

M. Mirto, M. Cafaro, S. Luigi Fiore, D. Tartarini, and G. Aloisio, "A
grid-enabled protein secondary structure predictor," IEEE Trans. on
Nanobioscience, vol. 6, no. 2, 2007.

K. Guimaraes, J. Melo, and G. Cavalcanti, "Combining few neural
networks for effective secondary structure prediction,” in Proc. 3
IEEE Symp. on Biolnformatics and BioEngineering, July 2003.

C. Cole, J. Barber, and G. Barton, "The Jpred 3 secondary structure
prediction server," Nucleic Acids Research, vol. 36, pp.197-201,
2008.

G. Pollastri, D. Przybylski, B. Rost, and P. Baldi, "Improving the
prediction of protein secondary structure in three and eight classes
using recurrent neural networks and profiles," Proteins, vol. 47,
pp. 228-235, 2002.

H. Shen and K. Chou, "Ensemble classifier for protein fold pattern
recognition," Bioinformatics, vol. 22, suppl. 1, pp. 1717-1722, 2006.



