
  

Abstract—A growing array of biotechnologies is being used 
to study the genetics of complex biomolecular traits in 
laboratory mice as models for human disease. Combined 
analysis of these datasets provides much of the power of the 
approach of functional genomics but this depends on the ability 
of databases to exchange data with each other and with 
analytical software. In the light of these challenges the 
European Commission has funded a coordination action, 
CASIMIR, to make recommendations on how this need might 
be fulfilled. We here report on two pilot projects and distill 
preliminary recommendations. 

I. INTRODUCTION 
ENETIC study of complex biomolecular traits in 
laboratory mice involves perturbing biological 

networks through genetic variation, observing the effects at 
one or more biomolecular level(s), finding regulatory 
interactions, and finally reconstructing molecular networks. 
Fig. 1 illustrates the challenging data management, 
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(pre)processing and integration required:  
Genetical genomics experiments [1] involve large 
scale molecular measurements on a reference panel of 
hundreds of genetically different mouse strains 
produced by particular (in)breeding strategies. 
Although this type of experiments may roughly follow 
a common protocol, they differ in their specifics at 
several steps: 
Each individual is typed with molecular marker 
technologies (markers in 1a, SNPs in 1b) to generate 
10,000-100,000 pieces of information about their 
genetic make-up (genotypes). Each individual is also 
profiled using gene expression technologies (Qiagen-
Operon microarrays in 1a) or mass spectrometry 
technologies (LC-MS in 1b) to get 100,000 pieces of 
information about which of the 20,000-30,000 genes 
are ‘switched on’ (gene expression) in a given tissue 
or cell population, or which genes give rise to a in 
protein and/or are associated with the occurrence of 
metabolite molecules (visible as mass peaks).  
The data analysis requires data exchange with various 
(pre)processing algorithms for gene expression (1a) or 
mass spectrometry (1b) data that generate output that 
often exceeds input in size and complexity. 
Interpretation of these results requires integration of 
gene/locus (1a) or enzyme/protein (1b) targets with 
highly dispersed background information from private 
and public repositories on, e.g., phenotypes, genomic 
context and pathways. All data, annotations and 
protocols have to be well managed to be able to track 
and trace experiments and, if needed, to re-do and re-
interpret analyses.  
 

After two decades of (post-)genomics research, one 
would hope that database infrastructures could be used ‘off-
the-shelf’ to support each particular type of experiments. 
Collaborations in CASIMIR showed that this is not yet the 
case. Some genotype and phenotype databases and 
computational tools have been integrated in MGI [2], 
GeneNetwork.org [3], and dbGaP [4] but these software 
infrastructures are designed as public repositories and not to 
support particular experimental workflows. Some software 
components for (pre-)processing [5]-[11] and for integration 
of background information [12]-[14] are available but 
assembly into seamless software infrastructure requires 
time-consuming changes in hand-written software code. In 
practice, this leaves biologists with the challenging task to 
learn the interfaces of different tools, reformat data files by 
hand to make them fit, copy-paste data and identifiers from 
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website to website, and merge all partial-results into an 
bunch of Excel or Word documents by hand. This laborious 

and error-prone process has to be repeated for each gene,  

 
 
Fig. 1.  Two variants of mouse genetics experiments are shown: (a) involves two-color microarrays and (b) mass spectrometry measurements. Database 
infrastructures supporting genetics experiments need to be dynamic to accommodate the variation that follows new experimental designs and methods. 
 
and again when data sources are updated, and does not scale 
up to the hundreds or thousand of genes typically found in 
whole genome experiments. 

Clearly, isolated development of more local 
infrastructures from scratch is not a sustainable option as it 
will exacerbate the problem with more incompatible 
software, more duplicated efforts and greatly reduced 
lifespan of the software. Instead, flexible mechanisms are 
desired to enable reuse, extension and foremost integration 
of mouse database resources. Based on two pilot studies that 
resulted from the first CASIMIR co-ordination meetings 
held in Corfu and Rome in 2007, we here present 
preliminary recommendations on alternative software 
methods, models and tools to develop the dynamic database 
infrastructures needed. 

II. GENERATING SUITABLE EXPERIMENTAL DATABASES  
The first pilot involves the generation of an easy-to-

extend and -integrate database infrastructure, taking 
genetical genomics experiments as example. The ideal 
database infrastructure has a minimal data model and flat 
file exchange format that closely resembles biologists 
practice, a graphical user interface (GUI) to easily submit 
and retrieve data, and simple application programming 
interfaces (API) for bioinformatician to easily integrate 
analysis tools and exchange data with related databases. 
Most importantly, the infrastructure should be easily 
modified into a new database variant, e.g. when new 
biomolecular technologies are introduced (e.g. Orbitrap 
mass spectrometry), when improved or new statistical 
protocols for (pre)processing data are developed (e.g. RMA 
to replace the MAS5.0 algorithm for normalization), or 

when new resources with background information come 
available (e.g. Europhenome database).  

Currently, development of new databases (or adaptation 
of existing ones) to suit new types of experiments requires 
much programming effort and expertise. Our recent 
perspective paper [15] outlined an alternative ‘model-
driven’ software engineering strategy that is adopted by 
several recent bioinformatics projects to generate such 
software more efficiently. Fig. 2 demonstrates in a 
simplified example how this strategy works in the pilot:  
 

A relatively simple file is created by hand to ‘model’ 
what particular experiment database is needed: a 
minimal ‘domain specific’ programming language 
(DSL) is used to efficiently describe the organization 
of experimental data entities such as biomaterials, 
protocols, and measurements and how these data are 
to be shown on the screen. The translation of these 
biological features from DSL file into the many 
program files needed for a complete database software 
is automated in the MOLGENIS software generator 
[15]-[17]. From a DSL file, the generator 
automatically creates all the programmatic code that 
needed to be written by hand before, including (i) an 
SQL file with all necessary programming statements 
for setting up a database, (ii) several application 
programming interfaces (API) in that allow 
bioinformaticians to connect the database to their 
processing tools via R statistics [18], Java, ‘REST’ 
hyperlinks or SOAP and (iii) a graphical user interface 
(GUI) by which users can submit and retrieve data via 
a web browser, optionally using (iv) a simple tab-



  

delimited file format for exchange of full experiment 
data. A new variant of database software is quickly 

created by just extending the textual description in  

 
 
Fig. 2.  Model-driven generation of biological databases using the MOLGENIS tool. Detailed software needs for an experiment are compactly modeled in a 
domain specific language; an simple example for microarray experiments is shown (DSL model file, left). The MOLGENIS generator reads the DSL file and, 
at the push of a button, automatically produces the custom software infrastructure described (right). The DSL model describes three data entities 

Experiment, Sample and Hybridization are described; the entity Sample has six fields, including ID, Phenotype and Chow. The DSL model also describes 
one user interface form  to manage Experiments, with a sub menu , consisting of two child forms for Samples and Hybridizations. These child forms are 
automatically linked to the parent form based on cross references, e.g. the field ‘Experiment’ of ‘Sample’ references to the ‘ID’ of an ‘Experiment’ . Use of 
default settings keeps the DSL file short: each field is default of type ‘string’ (a variable character string of length 255) unless otherwise specified to e.g. 
’decimal’ ; each field has to be set to a value by the researcher unless specified to be nillable ; each field can be edited (updated) unless specified to be 
read only ; and each entity is viewed one-record-per-screen unless specified as list  (not shown). Note: the example data in the screenshot were added 
post-generation.  
 

DSL with some new data entities for, e.g., a new 
protocol and then rerunning the generator.  
 

This model-driven strategy promises the generation of a 
whole ‘family’ of mouse genetics database variants with 
each family member accommodating a particular type of 
experiments such as Illumina SNP arrays, Affymetrix 
expression arrays, and Orbitrap proteomics mass spectrum 
measurements. The approach has several more advantages: 
Researchers can in a DSL file much better oversee what can, 
and cannot, be standardized between experiments as 
compared to overseeing many differences in software code; 
Bioinformaticians don’t need to reinvent software 
engineering ‘wheels’ because hardcore technical challenges 
that are common in the development of such software are 
encoded in the software generator; and the generated 
software components, and data processed with them, can be 
more easily reused and integrated by other laboratories 
because their standardized production process 

Currently, the pilot is being developed into a more 
complete database for genetical genomics [19] including a 
catalog of biotechnology specific extensions/variants at 
http://gbic.biol.rug.nl/dbgg.   

III. GENERATING INTEGRATIVE WORKFLOWS  
The second pilot aims to automate integration of 

experimental results with background information dispersed 
over private and public databases. Fig. 3a sketches the 
challenges when, for example, retrieving background 
information on a list of ‘candidate’ genes for (a) allelic 
phenotypes and strain specific genotypes, (b) the genomic 
context of the particular gene locations, and (c) pathways 
that these genes may be involved in. Automation of data 
retrieval from different resources such as (a) Mouse 
Phenome Database (MPD) [20], [21], (b) Ensembl [22], [23] 
and (c) Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [24]. [25] is not straightforward because these 
databases cannot directly ‘talk to each other’: programs can 
talk with MPD via flat file downloads, with Ensembl via its 



  

own Perl protocol, and with KEGG via a particular flavor of 
web services. This is even an optimistic scenario: most 
current biological databases are still primarily built for 

human users  
 
 

Fig. 3.  Creation of integrative workflows. Until now, bioinformaticians need to put in a lot of work  to connect data from different and distributed 

biological data sources (left panel a.). This is due to differences or non-availability of programmatic access methods , i.e. differences in languages and 
technical protocols. Use of technically standard wrappers, in this case using web services, makes it possible for sources to programmatically ‘talk to each 
other’ (right panel b.). The data can therefore be imported into a standardized query tool (in BioMART, dotted box). Alternatively, generators can be used to 
generate standard ‘wrappers’ for these sources (in MOLGENIS, boxes). KEGG already spoke web services and needed no wrapping. A workflow tool can be 
used to model the integrative workflow (in Taverna, b.). Wrapping the sources removes technical barriers so bioinformatician can focus on the important 
task: create computational protocols that (automatically) integrate data so it makes sense biologically. The working workflow can be downloaded from 
http://www.myexperiment.org/workflows/126. 
 
and have no or limited support for programmatic access. 
Moreover, if there is support for programmatic access then 
the programmatic interfaces use heterogeneous technology 
and semantics.  

Stein, in his seminal commentary [26] defined what is 
needed to create a ‘bioinformatics data nation’: data sources 
need to provide commonly accepted data formats, access 
methods, and a directory service that allows 
bioinformaticians/scripts to find them. Fig. 3b sketches the 
pilot solution [27] to enable such computational interplay 
build on the de facto standard integration syntax ‘web 
services’. Example of such technology is the SOAP protocol 
that is based on the simple idea of sending XML formatted 
text messages over computer networks, most notably the 
Internet protocols HTTP/HTTPS. Unfortunately, (SOAP or 
other) web services are not yet widely supported by data 
providers as their creation requires much additional 
implementation effort which is often too much to ask from 
smaller organizations. Therefore we used MOLGENIS and 
BioMART software tools to make existing tools MPD and 
Ensembl also ‘talk’ the web service language: BioMART 
[28], [29] is a standardized data warehouse where data 
providers can import their data into whilst MOLGENIS 
[15]-[17] generates software wrappers around a database 
such that data can be queried in their original structure. With 
web services in place, the Taverna [30], [31] software tool 
can be used to glue these resources together in an integrative 
workflow.  

Note that in this pilot scenario the underlying data sources 
remain autonomous components which only minimally 

cooperate to share their specific functionality by providing a 
standard syntax (web services) building on standard 
software tools. Next to this technical standardization, no 
structural or semantic standardization is assumed, instead 
the generic features of data are modeled and some kind of 
query-based logic is used for their API abstractions. This 
loosely-coupled approach is preferred over large scale 
standardization (e.g. in a data warehouse) as the domain 
expertise at each centre can be used to configure how and 
what data is presented to the researchers to address a 
particular research question. A drawback of this flexibility is 
that a lot of data conversion ‘shims’ where needed to 
overcome structural and semantic heterogeneity between the 
elements of the workflow. For example, Ensembl reports 
genomic location per single base pair while MPD reports per 
million base pairs (megabases); in the workflow a 
conversion is needed to allow data flow between them. 
Obviously, the need for such shims would be greatly 
reduced if data sources would standardize their data 
representations for ‘common’ data types. The challenge will 
be to standardize without sacrificing the qualities that makes 
a particular data source unique.  

The DSL model of the workflow from Fig. 2 is available 
to view and download from myExperiment 
(http://www.myexperiment.org/workflows/126) and can be 
run from within Taverna with the File->’Open workflow 
location’ option using the same URL. 



  

IV. PILOT IMPLEMENTATION PROCEDURE  
Below we describe the technologies we used to implement 
the two pilot systems and provide a short overview of 
related resources. 

A. MOLGENIS 
From a model described in domain specific language (DSL), 
MOLGENIS [15]-[17] can generate a database software 
infrastructure, including graphical front-end for human 
access as well as programmatic front-ends in R, Java and 
Web services for programmatic access,. The database 
software can be generated de novo (as in Fig. 2) but can also 
be generated as wrappers around existing databases (as in 
Fig. 3). For example, to generate the “MOLGENIS for 
MPD” we first downloaded delimited text data files from 
[32]. A DSL file with the basic model of all MPD data 
entities was derived from the headers of the downloaded 
data. These descriptions were further detailed by hand to 
add, for example, proper cross references between SNPs and 
Strains. Finally, we fed this DSL file to the generator to 
produce the working software, see [33]. The MOLGENIS 
generator is open-source and available at 
http://www.molgenis.org. 

B. BioMART 
BioMart [28], [29] is a standardized, query optimized data 
warehouse. The software comes with a range of query 
interfaces including an 'out of the box' website that can be 
installed, configured and customized according to 
requirements as well as as a Perl API and Mart Services 
(BioMart’s own version of web services). It is also 
integrated into several external software packages such as 
BioConductor [34] and Taverna. Several large biological 
datasets in the public domain have already been uploaded 
into BioMart, including dbSNP, Ensembl genomics, and 
PRIDE proteomics data which can be queried directly. New 
BioMARTs can be created using the MartBuilder tool to 
automatically transform a relational database structure into 
the generic BioMart schema. The BioMART data warehouse 
is open-source and available at http://www.biomart.org. 

C. Taverna 
Taverna [30], [31] is an environment for the design and 
execution of workflows that combine Web Services, 
BioMart queries, R-statistical analyses and/or BioMoby 
services, to name a few. Connecting to distributed data 
sources eliminates the necessity for downloading and 
maintaining local copies of data but combining distributed 
and heterogeneous services is a complex procedure. The 
workflow model is a record of such integration procedure 
describing what data sources have been linked and what 
‘shims’ have been added for data conversion between them. 
New steps can be added to the protocol by connecting to 
more services, shown as ‘processors’ in Taverna’s GUI. 
New services can be added to Taverna’s processor catalog, 
e.g., to add the MOLGENIS MPD services we needed to 

right-click ‘Available processors’ and then click ‘Add new 
WSDL scavenger’ to add the services from the WSDL file 
available on [33]. The Taverna workflow workbench is 
open-source and available at http://taverna.sourceforge.net.  

D. Related work 
Table 1 in [15] lists several more model-driven tools to 
generate biological software infrastructures to search, store, 
exchange and edit biological data (MOLGENIS [16], CCPN 
[35], caCORE [36], and Pedro [37]); share, and connect to, 
independently developed analysis components (BioMOBY 
[38], GALAXY [39] and PISE [40]); link those components 
together in processing workflows (Taverna [31]); and 
provide biologist-friendly user interfaces therefore 
(MOLGENIS, GALAXY and PISE). Each system has their 
own DSL which can either be textual, e.g., MOLGENIS has 
a XML-based textual language with keywords to define data 
entities and user interface screens (see Fig. 2), but also 
graphical, e.g., Taverna has a graphical language with boxes 
denoting processing components and the arrows denoting 
data flow between them (see Fig. 4).  
 

 
Fig. 4.  Model of the integrative workflow pilot described using Taverna’s 
domain specific language (DSL). 



  

 
The key to the success of a model-driven tool/domain 

specific language is the higher level of abstraction as 
compared to a ‘general’ programming language. This is 
made possible by limiting the scope of the ‘family’ of 
software that can be produced. If the members of the 
software family vary too widely then the DSL become very 
complicated and the generator very laborious to build [41]. 
For example, software to ‘manage microarray experiment 
data’ fits inside the MOLGENIS family while software to 
‘calculate gene networks from the collected microarray data’ 
does not. This may sound strange to a life scientist given the 
obvious biological commonalities amongst raw and 
processed microarray data but a calculation tool has 
different informatic needs (e.g. running/stopping algorithms) 
than a database tool (e.g. storing/searching data). Such 
calculation tools can for example be modeled by manually 
adding a plug-in written in the R statistical language, which 
although at a much lower level of abstraction, can also be 
considered a DSL to efficiently model statistical protocols 
(as compared to describing such protocols in a general 
programming language). 

V. RECOMMENDATIONS 
What has already become clear in the CASIMIR pilots 
conducted so far is that whatever standards are adopted they 
will inevitably remain dynamic and continue to develop, 
particularly as new data types are collected. Crucially they 
should allow the open-ended development of new analytical 
and data mining software and integration of efforts to agree 
such standards and develop new software is essential. This 
paper explored bioinformatics models to support such 
development to timely produce software infrastructures that 
‘mouse geneticists really want to have’. How can the mouse 
community optimally benefit?  

First, we recommend the development of a catalog of 
mouse specific databases and tools (e.g. for running analysis 
tools and data integration workflows) including user 
interfaces so mouse researchers can use them. They should 
also include the underlying DSL models, or modules thereof 
(MOLGENIS data models, Taverna integration workflows, 
BioMART queries, R analysis scripts) to help mouse 
genetics software developers to optimally benefit from each 
other’s work notwithstanding variation in research aims. An 
interesting example on how that can work is shown in the 
myExperiment.org project: a social networking portal where 
researchers can upload and download Taverna models of 
analysis workflows over the internet. 

Second, we recommend standardization of common parts 
of the infrastructures models (in DSL) to reduce the need for 
‘shims’ for making databases and tools talk to each other. 
However, mouse genetics is developing rapidly and 
methodologies to generate and analyze data are still being 
established which makes it hard to know what standards 
should look like. For this purpose, extensible data models 

have been proposed such as FuGE [42], the extensible data 
model for high-throughput investigations. These models 
exploit the fact that while the details of experiments may 
vary wildly, they share commonalities in terms of having 
protocols, applications of these protocols, samples, data 
which can be addressed in a standard way. The CASIMIR 
consortium, in collaboration with the GEN2PHEN 
consortium for human genetics, is now developing such 
extensible ‘standard’ data model for molecular phenotypes 
and genotypes [19]. 

Finally, we recommend that domain specific toolboxes 
(like MOLGENIS, Taverna, BioMART, R) should become 
more seamlessly integrated from a biologist perspective. For 
example, one can now already seamlessly access BioMart 
and MOLGENIS from within Taverna workflows but use of 
Taverna itself requires significant background knowledge 
which is beyond non-technical users. Integration of 
databases and workflows such that they can be run at the 
push of a button from within, for example, the MOLGENIS 
user interface promises a future with many benefits from the 
generation of ‘dynamic software infrastructures for mouse 
genetics’. 
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