
  

  

Abstract—micoRNA (miRNA) is a vital class of non-coding 
RNA genes, which participates in post-transcriptional gene 
regulation in eukaryotic cell. Interestingly, some close 
relationships between miRNA expression levels and several 
human diseases like cancers have been recently uncovered. 
Difficulties of identifying miRNAs via direct experimental 
method due to their special and temporal expression patterns 
make the computational prediction methods paramount 
important. Specially, non-comparative computational methods 
would have the advantage of recognizing species-specific 
miRNAs that can be missed by comparative methods. In this 
paper we present a systematic development of an improved 
classifier system for non-comparative human miRNA gene 
recognition using effective machine learning techniques.  

I. INTRODUCTION 

microRNA (miRNA) is an important class of non-coding 
RNAs (ncRNAs). ncRNAs work in a cell as RNA molecules 
without ever being translated into proteins. miRNAs 
regulate translation process of messenger RNAs (mRNAs) 
into proteins. That is, through specific base pairing with 
mRNAs, miRNAs induce mRNA degradation or translation 
repression, or both, which are collectively known as 'post-
transcriptional gene regulation' [1],[2]. miRNAs operate in 
highly complex regulatory networks, and control many 
functions in eukaryotic cell [1],[2]. It has been estimated that 
20-30% of human genes could be controlled by miRNAs 
[2]. Interestingly, very close relationships between miRNA 
expression levels and human diseases like different types of 
cancers and mental retardations such as Fragile X Syndrome 
have been recently identified [3],[4]. These findings have 
already offered the prospect of using miRNA expression 
profiles for diagnosis of cancers [5].  

Although it has been estimated in [2],[3] that there has to 
be at least about 1000 conserved and non-conserved miRNA 
genes in human genome, only 678 of them have been 
identified so far according to miRBase11 [6]. miRBase [6] is 
the major miRNA database currently available. The 
discovery of novel miRNAs and understanding their 
regulatory networks would provide an opportunity for 
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identifying their functionalities such as the associations with 
other human diseases. However, the identification of novel 
miRNA genes by direct experimental methods alone is a 
very tedious task due to their temporal and special 
expression patterns [1],[2],[7]. Therefore, proper 
computational prediction methods are paramount important 
in the discovery of novel miRNA genes in human and other 
genomes. 

Generally, computational ncRNA gene prediction is a far 
more difficult task compared to protein coding gene 
prediction due to the lack of availability of proper signals 
that can be extracted from ncRNA genes [8],[9]. 
Nevertheless, the main signals used in the existing methods 
for ncRNA gene recognition are the features related to RNA 
secondary structures [8],[9]. Similarly, the major signal used 
in the miRNA gene prediction is the hairpin (stem-loop) 
secondary structure of precursor miRNAs (pre-miRNAs) 
[1],[2]. Pre-miRNA is a vital sub-state of miRNA biogenesis 
pathway, generally folding into hairpin secondary structures. 
miRNA genes are transcribed as long primary miRNAs 
which are then processed into ~90nt pre-miRNAs. Pre-
miRNAs are then cleaved into ~22nt mature miRNAs. 
miRNA biogenesis pathway is described in detail in [1],[2]. 
Fig. 1 depicts the hairpin secondary structure of human pre-
miRNA hsa-mir-520b (from miRBase11), which is predicted 
by the RNAfold [10] program.  

 
Fig. 1. Human pre-miRNA has-mir-520b and its secondary structure 
predicted by the RNAfold program under the default parameters. 

The available computational methods for human miRNA 
gene recognition have been developed in two directions as 
comparative methods and non-comparative methods. The 
main rationale behind comparative methods is the prediction 
of genome sequences that can be folded into pre-miRNA-
like hairpin secondary structures and are conserved in one or 
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more closely related genomes as novel pre-miRNAs. The 
corresponding genomic locations are then identified as 
candidate locations for miRNA genes. Several variations of 
comparative methods for human miRNA prediction are 
discussed in [11]-[15]. Although these phylogenetic 
conservation-dependent comparative methods are powerful 
in genome-wide screening of well-conserved pre-miRNAs 
among closely related species, these could miss novel 
miRNAs for which close homologous cannot be found due 
to the limitation of current data, unreliability of alignment 
algorithms [16], or especially due to the availability of 
rapidly evolving (non-conserved) and species-specific 
miRNAs [16],[17]. Reference [18] has emphasized that the 
non-conserved miRNAs in human genome (which are 
missed by comparative methods) are still high and yet to be 
recognized. 

The other approach, non-comparative computational 
recognition, does not rely on the phylogenetic conservation 
signal. Therefore, they have the advantage of recognizing 
non-conserved/species-specific miRNAs, and miRNAs that 
can be missed due to the limitations of comparative data and 
methods. The main idea of non-comparative methods 
developed so far is the effective identification of pre-
miRNAs among the hairpin secondary structures predicted 
from the human genome. This is not a simple task as human 
genome consists of many random genomic sequences that 
can fold into pre-miRNA-like hairpin secondary structures, 
which are not real pre-miRNAs [18]. These are called 
‘pseudo hairpins’ [16]-[19]. Reference [18] presents an 
initial non-comparative method which first screened about 
11 million hairpin structures from human genome, most of 
which were pseudo hairpins. Then it combined 
bioinformatics predictions with microarray analysis and 
sequence-directed cloning to detect a set of novel human 
miRNAs that had been missed by comparative methods 
earlier. This method predicted 89 novel human miRNAs, 
interestingly, 53 of which are not conserved beyond 
primates. Following this inaugural work, several classifier 
systems have been developed as non-comparative prediction 
methods to distinguish human pre-miRNA hairpins from 
pre-miRNA-like pseudo hairpins. Reference [17] presents a 
Support Vector Machine (SVM)-based method called 
3SVM, which classified human pre-miRNAs from pseudo 
hairpins based on 32 ‘structure-sequence triple features’. 
Another SVM-based classification method, miRabela, which 
focused on recognizing new miRNA candidates closely 
located around known miRNAs in human genome, is 
presented in [19]. miPred [16] is also an SVM-based method 
developed for the classification of human pre-miRNAs 
based on a set of 29 ‘global and intrinsic’ features. 

In this paper we present a systematic development of a 
novel SVM-based classifier system that could be more 
useful for the non-comparative prediction of human pre-
miRNAs than the exiting methods. In Section 2 we 
reformulate the classification problem associated with the 

miRNA gene recognition based on some interesting findings 
uncovered during this research and by others. There, we also 
show that the existing non-comparative classification 
methods have been not developed to meet these 
classification requirements, and hence, the importance of the 
proposed method. Section 3 introduces the best possible 
dataset available to develop the proposed classifier, and the 
features extracted from the datasets. Section 4 explains the 
choice of SVM classification paradigm and an efficient 
technique for SVM model selection. Section 5 discusses the 
effect of class imbalance problem associated with our 
datasets and the solutions to overcome it. Section 6 presents 
the classification results obtained in this research. Finally the 
paper concludes in section 7.   

II. THE PROPOSED METHOD 
As pointed out above, human genome consists of a vast 

number of pre-miRNA-like pseudo hairpin sequences [18]. 
Moreover, it has also been found that hairpin secondary 
structures are common motifs in other types of ncRNAs 
[14],[20],[21]. Importantly, we identified 129 other types of 
ncRNA sequences, which are present in our other ncRNA 
dataset described in section 3, were completely folded into 
pre-miRNA-like hairpin secondary structures by the 
RNAfold  program under the default parameters (at C°37 ). 
Therefore, it is clear that the effective classification of pre-
miRNA hairpins not only from genome pseudo hairpins, but 
also from other ncRNAs is essential in the non-comparative 
prediction of novel human pre-miRNAs. 

On the other hand, we observed that 31 out of 674 non-
redundant human pre-miRNA sequences available in 
miRBase11 were folded into secondary structures having 
multi-branched loops like the structures of most of the other 
ncRNAs. This folding was also observed by the RNAfold 
program under the default parameters (at C°37 ). miRBase11 
IDs of these 31 pre-miRNAs are presented in Table 1. There 
can be many such pre-miRNAs to be recognized. Therefore, 
it may be useful to consider the sequences folded into 
structures with multi-branched loops too when finding novel 
human pre-miRNAs. 

 
TABLE 1. MIRBASE11 IDS OF 31 HUMAN PRE-MIRNA SEQUENCES FOLDED 

INTO STRUCTURES WITH MULTI-BRANCHED LOOPS BY THE RNAFOLD 
PROGRAM.  X = ‘HAS-LET’. Y = ‘HAS-MIR’. 

 IDs  of Human pre-miRNA sequence folding into structures with multi-
branched loops 
X-7a-1, X-7b, X-7d, X-7f-2, Y-7-2, Y-151, Y-181a-2, Y-181b-1,  
Y-194-2, Y-204, Y-212, Y-217, Y-220c, Y-339, Y-425, Y-453, Y-551a, 
Y-557, Y-566, Y-572, Y-598, Y-657, Y-744, Y-1224, Y-1225, Y-1227, 
Y-1236, Y-320b-2, Y-1202, Y-1302-2, Y-1302-3. 
 
However, the existing non-comparative methods [16]–

[19] were mainly developed to distinguish real pre-miRNAs 
from genome pseudo hairpins only. In miPred [16] method, 
the classifier trained for the classification of pre-miRNAs 
from pseudo hairpins was tested for the classification of an 



  

animal ncRNA dataset. However, the recognition rate 
obtained was low as 76.15%. Although miRabela [19] 
method considered some other ncRNAs (some tRNAs and 
rRNAs) in its negative dataset, this dataset was not 
complete. Therefore, these exiting non-comparative methods 
could predict the hairpin structures of other ncRNAs and 
their motifs incorrectly as candidate human pre-miRNAs 
resulting more false positives. Moreover, except miPred 
method, these exiting classifiers can not be used to 
recognize the pre-miRNAs folding into structures with 
multi-branched loops.  

This paper presents the systematic development of a 
proper classifier system for the classification of pre-miRNA 
hairpins from both pseudo hairpins and other ncRNAs by 
using effective machine learning techniques. This classifier 
can be used for the prediction of pre-miRNAs folding into 
hairpin structures as well as pre-miRNAs folding into 
structures with multi-branched loops.    

III. DATA AND FEATURES 

A. Data 
The proposed classifier system should classify real human 

pre-miRNAs from both pseudo hairpins and other ncRNAs. 
Therefore, the positive training dataset for the classifier 
development should be composed of known human pre-
miRNAs, while the negative training dataset should be 
composed of both pseudo hairpins and human other 
ncRNAs. The datasets selected are introduced below. 

 
1) Positive dataset 

human pre-miRNAs: We retrieved 678 human pre-miRNA 
sequences published in miRBase11 
(http://microrna.sanger.ac.uk/sequences/) [6]. Then we 
filtered 674 non-redundant pre-miRNA sequences to be used 
as the positive dataset. The minimum, maximum and 
average lengths of these pre-miRNAs were 53nt, 137nt and 
89nt, respectively. 

 
2) Negative dataset 

Pseudo hairpins: We obtained 8,494 non-redundant 
human pseudo hairpin sequences which have been 
previously used in 3SVM [17] and miPred [16] methods. 
Originally these pseudo hairpins were extracted from human 
RefSeq genes [22] without undergoing any experimentally 
validated alternative splicing event. Therefore, it is more 
likely that these pseudo hairpin sequences do not contain 
any annotated or un-annotated pre-miRNA sequences. The 
minimum, maximum and average lengths of these sequences 
were 62nt, 119nt and 85nt, respectively. 

 
Human other ncRNAs: Ideally, the other ncRNA dataset 

should be composed of all human other ncRNAs recognized 
so far except miRNAs. However, a complete human ncRNA 
dataset is not readily available so far in any RNA database to 
extract. Although miPred method presented an ncRNA 

dataset, it is not purified due to its containment of animal 
ncRNAs in addition to human ncRNAs. Therefore, we did 
not consider that dataset in this study. We obtained a 
manually annotated human ncRNA dataset discussed in 
[23], which was originally published in [24]. This dataset 
was created by starting with the automatic prediction 
methods, and then carefully removing the predicted 
pseudogenes manually. Therefore, this dataset is regarded as 
the best currently available ncRNA predictions for the 
human genome according to [23]. The original dataset 
contained 1,020 ncRNA sequences (except miRNAs) whose 
sequence lengths varied from 48nt to 548nt. After removing 
the redundant sequences and sequences longer than 150 
bases (in order to be comparable with human pre-miRNA 
and pseudo hairpin datasets) 754 sequences were recovered 
to use as the other-ncRNA dataset in this study. This dataset 
included 327 tRNAs, 5 5S-rRNAs, 53 snRNAs, 334 
snoRNAs, 32 YRNAs and 3 other miscellaneous RNAs. The 
updated sequences of snoRNAs were obtained from 
snoRNABase database (http://www-snorna.biotoul.fr/) [25]. 
The average length of a sequence in the selected ncRNA 
dataset was 89nt. 

B. Features 
One of the main challenges in machine learning-based 

classifier development is the extraction of an appropriate set 
of features on which a classifier is trained to identify each 
class effectively. In this problem, one should choose a 
proper set of features that can be equally extracted from both 
genomic sequences folding into hairpin secondary structures 
and sequences folding into structures with multi-branched 
loops.  

In this research we focused on the features used by the 
existing human miRNA classification methods. Out of these, 
we selected the 29 global features used in miPred [16], 
which can be calculated regardless of the type of the 
secondary structure. These features include 17 sequential 
features (16 dinucleotide features [AA%, AC%, …, UU%], 
and [%C+G]) calculated from the primary sequence itself, 6 
folding measures (dG, dP, dD, dQ, MFEI1, MFEI2) and 1 
topological descriptor (dF) calculated from the secondary 
structure of the sequence, and 5 normalized variants of dG, 
dP, dQ, dD and dF, i.e., zG, zP, zQ, zD and zF. Here we 
adopted the same symbols used in miPred to denote these  

features. The secondary structures of the sequences were 
predicted by the RNAfold program with the default 
parameters at C°37 . We extracted these features on our 
positive and negative datasets by adopting the scripts written 
in miPred method, which are available at http://web.bii.a-
star.edu.sg/~stanley/Publications.  

IV. CHOICE OF SVM CLASSIFIER PARADIGM AND MODEL 
SELECTION 

SVM is a supervised machine learning paradigm for 
solving linear and non-linear classification and regression 



  

problems [26]. We chose SVM as the classification 
paradigm in this research due to its high generalization 
capability [27], ability to find global classification solutions 
[27], and successful application in bioinformatics and other 
practical domains including the previous pre-miRNA 
classification research [16],[17],[19]. 

A. Model Selection of SVM 
The model selection of SVM involves the selection of a 

kernel function and its parameters, which yield the optimal 
classification performance for a given dataset [27]. Among 
the available kernel functions, the Radial Basis Function 
(RBF) is the most popular and widely used one due to its 
higher reliability in finding optimal classification solutions 
in most practical situations [28],[29]. The problems 
associated with other kernels (Sigmoid, Polynomial, etc.) are 
discussed in [27]-[29]. Interestingly, it has been found that 
the Linear kernel could be seen as a special case of RBF and 
this relationship could be used to ease the parameter 
selection under RBF [28]. In this method, first, a linear 
parameter search is conducted under the Linear kernel and 
the optimal value for the parameter C is found. Let's call that 
value as C

~ . Then, the range of one parameter (say γ ) under 
the RBF is fixed. The corresponding best value of the other 
parameter (C) with respect to each value in the range of γ  
can be calculated by (1). The derivation of this relationship 
is explained in [28]. 

 

                    )log1(~loglog 222 γ+−= CC  (1)                     
Now the parameter search of RBF has become linear 

which is more efficient than the usual grid search specially 
with large datasets as ours. We used this method of model 
selection to train SVM models in this research. The 
performance of the classifier at each parameter point is 
evaluated by 5-fold cross-validation training on the training 
dataset using G-mean metric. The reason for using this 
metric with its definition is given in the next section. 
Following the above method, we first considered the Linear 
kernel function and conducted a coarse parameter search 
with the value of ].15,...,4,5[log2 −−=C  Say we found the 
highest value for cross-validation G-mean at .log2 aC =  
Then we conducted a narrow parameter search in the space 

]75.0,...,5.0,75.0[log2 +−−= aaaC , found the optimal 

value for C2log , and fixed it as the value of .~log2 C  Then 
the RBF kernel was considered. We fixed the range 

].5,...14,15[log2 −−=γ  Then the corresponding value of 
C2log  for each γ2log value was found by (1), and a coarse 

parameter search with each )log,(log 22 γC  was conducted. 
If we found the best value for cross-validation G-mean at 

b=γ2log , again a narrow parameter search was conducted 
in the range ]75.0,...,5.0,75.0[log2 +−−= bbbγ  with the 

corresponding C2log  values found by (1). After finding the 
best parameters giving the highest cross-validation G-mean 
value for the training dataset, a new SVM model was trained 
using the complete training dataset at those parameters. 
Then a separate testing dataset was used to measure the 
performance of the developed classifier. The matlab 
interface of libsvm2.86 [30] package was chosen as the 
SVM training program. All the experiments in this research 
were run in matlab. Before training the SVM classifier 
systems, we scaled the complete dataset into the range [-
1,+1] following the guidelines in [29]. 

V. CLASS IMBALANCE PROBLEM 
One of the main problems encountered in our dataset was 

its imbalance. That is, the positive dataset (674 pre-
miRNAs) was largely outnumbered by the negative dataset 
(9248 = 8494 pseudo hairpins + 754 other ncRNAs). The 
ratio between the positive and negative dataset was ~1:13.7. 
It has been well studied in machine learning research that 
training a classifier system with such an imbalance positive 
and negative dataset can result in poor classification 
performance with respect to the minority class [31], - in this 
case it would be with respect to the positive (pre-miRNA) 
class. Generally, a classifier should result in high 
performance with respect to both positive and negative 
classes for it to be used for the real-world predictions with 
high confidence. This data imbalance problem is generally 
known as class imbalance learning problem in machine 
learning literature. It has been found that SVM classifiers 
can also be sensitive to class imbalance [32], [33].  

The solutions developed to overcome this problem are 
called class imbalance learning methods which can be 
divided into two main categories: external/data processing 
methods and internal/algorithmic methods [31]. External 
methods are independent from the learning algorithm being 
used, and basically involved in pre-processing of training 
data to make them balanced. Random over/under-sampling 
[31], SMOTE [34] and multi-classifier training [31] were the 
external imbalance learning methods considered in this 
research. In random under-sampling the examples from the 
majority class are removed randomly until a particular class 
ratio is met [31]. In random over-sampling the examples in 
majority class are duplicated [31]. SMOTE [34] is an over-
sampling technique which introduces new synthetic 
examples in the neighborhood of minority examples instead 
of directly duplicating them. In multi-classifier system 
(MCS) training, the negative (majority) training dataset is 
randomly divided into several sub datasets each having the 
similar number of examples as the positive dataset. Then a 
set of classifiers are developed, each with a different 
negative dataset and the same positive one. The predictions 
of the ensemble of the classifiers are combined using a 
particular combination function.  

Generally, internal imbalance learning methods engage in 
the modification of the learning algorithm to remove its bias 



  

for the majority class. Different error costs (DEC) method 
[32],[33] has been used for SVMs as an internal imbalance 
learning method. DEC method uses two error cost values in 
SVM training, such that C+ for the positive class and C- for 
the negative class [33]. Assigning a higher miss 
classification error cost for the positive class than the 
negative one would make the classifier less favorable for the 
negative class under the data imbalance.   

  More crucially, it has been found that the best imbalance 
learning technique which would give the highest performing 
classifier is domain and dataset dependent [31]. Therefore, 
we applied the above mentioned external and internal 
imbalance learning methods for SVMs in order to find out 
the best classification results in this problem. The results 
obtained are discussed in the next section. It has been well 
studied that the most commonly used performance metric 
'Accuracy' (Acc = the percentage of correctly classify 
instances) could not be used to measure the performance of 
a classifier precisely when the class imbalance problem is 
presented, as it does not reveal the true classification 
performance with respect to the positive and negative 
classes separately [31],[32]. Therefore, we used sensitivity 
(SE = proportion of the positive examples correctly 
classified), specificity (SP = proportion of the negative 
examples correctly classified) and Geometric mean 

)*( SPSEmeanG =−  to measure the performances of the 
classifiers developed in this work as used in other class 
imbalance learning research [32]. 

VI. RESULTS AND DISCUSSION 
We first trained an SVM classifier with the complete 

imbalance dataset to get an idea about the classification 
performance that could be obtained. Here, the complete 
imbalance dataset was randomly divided into five equally 
sized partitions. We used stratified random sampling such 
that each partition contained the same ratio of positive and 
negative examples. Then four partitions were used together 
as the training dataset to train an SVM classifier following 
the model selection method described in section 4. Next, the 
resulted model was tested for its classification performance 
on the fifth dataset. This procedure was repeated five times 
with different combinations of training and testing partitions 
in an outer 5-fold cross validation loop and the classification 
results on the testing datasets were averaged. This 
experiment gave the following averaged test classification 
results: Gm=86.36%, SE=75.23%, and SP=99.13%. From 
these results it was clear that the classifier developed with 
the imbalance dataset was biased towards the majority 
negative class (SP >> SE), and this provided a good 
evidence for the requirement of applying class imbalance 
learning methods for the development of a proper classifier 
in this problem. 

Under class imbalance learning, we first considered the 
external imbalance learning methods. The re-sampling 

methods (random over/under sampling and SMOTE) were 
applied with 50% and 100% re-sampling rates. As an 
example, in 50% under-sampling, only 50% of the 
additional examples in the majority class were randomly 
removed. In SMOTE algorithm the number of nearest 
neighbors (k) was used as 14. In MCS training, the negative 
dataset was divided into 14 subsets based on the positive to 
negative dataset ratio (~13.7), and subsequently the same 
number of classifiers were trained. The majority voting 
function was used to combine the results of the ensemble. 
Next the DEC method was applied with the imbalance 
dataset. Following the findings of [32] we chose the ratio 
between positive error cost (C+) and negative error cost (C-) 
to be equal to one over the class ratio (0.073).    

These imbalance learning experiments were also 
conducted using the 5-fold outer loop cross validation 
method described at the beginning of this section. That is, 
first, an SVM model was trained by a particular imbalance 
learning method with the training dataset containing 4/5th of 
the complete dataset. Then its performance was tested on a 
separate testing dataset containing the remaining 1/5th of the 
dataset. This procedure was repeated 5 times with different 
training and testing datasets and the test results were 
averaged. Table 2 summarizes the classification results 
obtained by these class imbalance learning methods. 
According to these results the DEC method produced the 
highest classification results (Gm=92.66%) in this problem 
with SE=90.80% and SP=94.56%.  

 
TABLE 2. CLASSIFICATION RESULTS OBTAINED BY DIFFERENT CLASS 

IMBALANCE LEARNING METHODS. 
 

Learning Method 
 

G-mean (%) 
 

SE (%) 
 

SP (%) 
Imbalance Data 86.36 75.23 99.13 
Over-Sampling – 100% 92.64 90.66 94.66 
Over-Sampling – 50% 92.17 87.99 96.55 
Under-Sampling – 100% 92.63 91.60 93.67 
Under-Sampling – 50% 88.28 78.79 98.93 
SMOTE - 100% 92.38 89.91 94.91 
SMOTE – 50% 90.95 85.93 96.27 
MCS 92.49 90.50 94.52 
DEC 92.66 90.80 94.56 

 
The results obtained in this research for the classification 

of human pre-miRNAs from both pseudo hairpins and other 
ncRNAs outperform the results reported in the existing non-
comparative classification methods (presented in 
[16],[17],[19]) developed solely for the classification of pre-
miRNAs from pseudo hairpins (Table 3).  

Specially, it was observed that the datasets used by these 
existing classification methods [16],[17],[19] suffered from 
class imbalance problem (very large pseudo hairpin dataset 
compared to pre-miRNA dataset), but, surprisingly, none of 
these methods have considered using proper class imbalance 
learning methods for classifiers training. Moreover, the 
training and testing methods used for the development of 
these classifiers were not systematic in the sense that none 
of these methods have used different training and testing 



  

datasets in a cross-validation scheme to validate the 
classification results.  

 
TABLE 3. COMPARISON OF THE  BEST CLASSIFICATION RESULTS OBTAINED 

WITH THE RESULTS OF EXISTING NON-COMPARATIVE METHODS.  

Method 
 

Classification  of  
pre-miRNAs from 

G-
mean 
(%)  

 
SE 

 (%) 

 
SP 
(%) 

Our pseudo hairpins + 
other ncRNAs 

92.66 90.80 94.56 

3SVM pseudo hairpins only 90.66 93.30 88.10 
miPred pseudo hairpins only 91.01 84.55 97.97 
miRabela pseudo hairpins only 82.99 71.00 97.00 

VII. CONCLUSION 
In this paper we presented the development of an 

improved classifier system for non-comparative human 
miRNA gene recognition using effective machine learning 
techniques in a systematic way. This included the 
introduction of a new ncRNA training dataset, the 
application of class imbalance learning methods, and the use 
of systematic cross validation training for classifier 
development and performance evaluation. 

However, the best classification results obtained in the 
research (SE=90.80% and SP=94.56%) might be further 
improved before this classifier is applied for the real-world 
prediction of human miRNA genes. This could be possible 
by further experimenting with class imbalance learning 
methods that increase SE without sacrificing a significant 
amount of SP, and by extracting new biologically relevant 
features better representing the datasets. Moreover, when the 
real-world prediction is carried out, one can focus on the 
neighborhood of known miRNA genes based on the 
observation made in [19] that human miRNA genes can be 
found in clusters in the genome. However, investigations 
should be carried out for the ways of reducing false positive 
predictions when predicting the human pre-miRNAs folding 
into structures with multi-branched loops. 
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