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Abstract--This paper presents the design and 

implementation of a high performance FPGA-based core 
for BLAST sequence alignment with the two-hit method. 
BLAST with two-hit is a very widely used heuristic 
biological sequence alignment algorithm, and this paper is 
the first reported FPGA implementation of it, to our 
knowledge. The architecture of our core is parameterized 
in terms of the sequence lengths, match scores, gap 
penalties, and cut-off and threshold values. It is composed 
of various blocks each of which performs one step of the 
algorithm in parallel with the others. This results in a high 
performance and efficient FPGA implementation, which 
outperforms equivalent software implementations by one 
order of magnitude or more. Real hardware 
implementations show that our core is 52 times faster than 
equivalent software implementations, on average.  
Furthermore, the core was captured in an FPGA-
platform-independent language, namely the Handel-C 
language, to which no specific resource inference or 
placement constraints were applied. Hence, the same code 
can be easily ported to different FPGA families and 
architectures. 

I. Introduction 

In Bioinformatics and Computational biology (BCB), 
biological sequence alignment is a very common task 
where subject sequences from a large database are 
aligned to a query sequence to find similarities between 
the query sequence and the sequences in the database 
[1]. Obtaining information about a newly discovered 
biological sequence (i.e. Protein, DNA or RNA) from 
other known sequences is a major application of this 
operation. For example, if a new sequence is found to 
be similar to a known cancerous sequence, then 
information regarding the functionality of the new 
sequence can be deduced. This is obviously useful in 
early disease diagnosis and drug engineering. 
Furthermore, biological sequence alignment can be 
utilized in the study of   evolutionary development and 
history of species [1] [2]. 
Sequence alignment is a computationally intensive 
operation, however. This is exacerbated by the 
exponential growth in biological sequence databases. 
Therefore, desktop computer systems cannot, usually, 
perform this task within acceptable execution 
timeframes. Hence, faster computing platforms are 
required. 
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Recently, high performance reconfigurable hardware in 
the form of Field Programmable Gate Arrays (FPGAs) 
has been proposed as an efficacious and efficient 
implementation platform for sequence alignment 
algorithms [3] [4] [5]. Indeed, their ASIC-like 
performance coupled with their reprogrammability 
feature make FPGAs capable of providing high speed-
ups compared to general purpose processors, with the 
added convenience of reprogrammability.       
There are various biological sequence alignment 
algorithms in the literature. Some of these are 
exhaustive and give optimal alignments (e.g. 
Needleman-Wunsch [6], Smith-Waterman [7]) and 
others are heuristic and give sub-optimal alignments 
(e.g. FASTA [8], BLAST [9]). In this paper, we 
concentrate on Basic Local Alignment Search Tool 
(BLAST) which is a heuristic local alignment 
algorithm. It is much faster than ordinary exhaustive 
dynamic programming algorithms, although it produces 
local alignments which are not always optimal. The 
design and implementation of BLAST with two-hit 
method [10] (a variant of BLAST) is presented in this 
paper. To our knowledge, this is the first reported 
FPGA implementation of this algorithm variant. It 
results in 52x speed-up over equivalent software 
implementations on average. Besides, the design was 
captured in a FPGA-platform-independent language, 
namely Handel-C language [13], which makes it 
portable across a number of FPGA architectures (e.g. 
from Xilinx or Altera).  
In the remainder of this paper, essential background 
information on the general BLAST algorithm will be 
presented first. Following that, the design and 
implementation of our FPGA core for BLAST with the 
two-hit method will be elaborated. After that, timing 
performance of our core implementation is presented 
and compared with equivalent software implementation 
running on desktop computers. Finally, conclusions are 
laid out with plans for future work. 

II. Background 

Biological sequences evolve through mutation, 
selection and random genetic drift [11]. Mutation, in 
particular manifests itself through 3 main processes: 
• Substitution of residues: Residue A in the sequence 

is substituted by another residue B. 
• Insertion of residues: New residues are inserted into 

the sequence. 
• Deletion of residues: Existing residues in the 

sequence are deleted. 
Insertions and deletions result in gaps which are taken 
into consideration when aligning biological sequences. 
The degree of alignment of biological sequences is 
measured by a score which is obtained by the 
summation of score terms of each aligned pair of 



residues with possible gap penalty terms. Score terms 
for each aligned residue pair are obtained from 
probabilistic models which are stored in score or 
substitution matrices such as BLOSUM50 [1]. The 
latter is a 20x20 matrix for protein sequence residues. 
On the other hand, gap penalties depend on the length 
of the gap and are independent of gap residues. There 
are two main types of gap penalties: 
• Linear gap penalty: The cost of a gap of length 

g is given by following linear function: 
 

Penalty (g) = -g*d 
 

• Affine gap penalty: A constant penalty is given 
for opening a new gap while a linear and 
smaller penalty is given for subsequent gap 
extensions. The cost function of the affine gap 
penalty is hence given by the following affine 
equation: 

 
Penalty (g) = -d-(g-1)*e 

 
BLAST stands for Basic Local Alignment Tool. It is 

developed on the ideas of FASTA. It is used for 
searching both protein and DNA sequence databases for 
sequence similarities. It is a heuristic local alignment 
algorithm which approximates the dynamic 
programming Smith-Waterman algorithm. Since it is a 
heuristic algorithm, the local alignment it produces is 
not always optimal. However, it is much faster than the 
Smith-Waterman algorithm. As a result, BLAST and its 
variants are some of the most widely used sequence 
search tools. 
The central idea of the BLAST algorithm is that a 
statistically significant alignment is likely to contain a 
high-scoring pair of aligned words. BLAST first finds 
these high scoring pairs of aligned words and then 
extends them to the real alignment. These words are k-
residues long where k is different for DNA and protein 
sequences. The default k values for DNA and protein 
sequences are 11 and 3 respectively. There are 3 basic 
steps of BLAST: 
• Pre-processing the query sequence: All k-long 

words in the query sequence are extracted. Then, 
words that are similar to these are found. We call 
the overall results the k-words. 

• Scanning the subject sequences: All the subject 
sequences in the database are scanned one by 
one for matches with the obtained k-words. 

• Extension of the matches: All matches in the 
subject sequences are extended to form local 
alignments between the query sequence and 
related subject sequences in the database. 

In subsections II.A-II.C, all basic steps of the BLAST 
algorithm mentioned above will be explained in more 
detail. 
It is worth mentioning at this stage that the 
aforementioned basic steps belong to the original 
BLAST algorithm. However, several variants of the 
original algorithm have been devised over the years 
with the aim of increasing its sensitivity while keeping 
run-times at minimum. All of these variants include the 
3 basic steps of the original algorithm, with the addition 

of new steps. In this paper, we discuss one of these 
variants, namely   BLAST with two-hit method which is  
described in subsection II.D. 

A. Step 1: Pre-processing the Query Sequence 
An example protein sequence which has 9 residues (or 
amino acids) is shown below: 
 

LVNRKPVVP 
 
In this first step, we take the query sequence and chop it 
into overlapping k-words as illustrated below for the 
query sequence shown above, with k = 3: 

 

Word 0: LVN 

Word 1: VNR 

Word 2: NRK 

Word 3: RKP 

Word 4: KPV 

Word 5: PVV 

Word 6: VVP 

As it can be seen, there are 7 words extracted from the 
query sequence which are 3 residues long. In general, 
the number of words extracted equals (m-k) + 1 where 
m is the number of residues in the query sequence. 
After this, words similar to each of these extracted 
words are found through the usage of specific scoring 
matrix.   
Words which score at least threshold value T with the 
scoring matrix when aligned with the words extracted 
from the query sequence are regarded to be similar to 
these extracted words. Similar words for each extracted 
word are found and then recorded with the location 
address of the corresponding extracted word in the 
query sequence tagged to them. This process is 
illustrated below with the first extracted word shown 
above (i.e. LVN) using the BLOSUM50 scoring matrix 
for the case where T is 12:          
 

         Word 0: L    V   N 
                        4 + 4 + 6 = 14  
Query word 1: L   V   N      
 

          Word 0: L    V    N 
                        2 + 4 + 6 = 12 
Query word 2: M   V    N      
 

          Word 0: L    V    N 
                        4 + 4 + 1 = 9 
Query word 3: L   V    S      
Query word 1 and query word 2 score 14 and 12 
respectively when aligned with the first extracted word 
(LVN) from the query sequence. Since score values are 
over or equal to 12, query word 1 and query word 2 are 
recorded with the location address of the first extracted 
word in the query sequence, which is 0. However, query 
word 3 is discarded since it scores less than 12 when 
aligned with the extracted word. All recorded similar 
words are used in step 2 of the BLAST algorithm. 
 
 
 



B. Step 2: Scanning the subject sequences 
In this step, all subject sequences in the database are 
scanned one by one to find the possible exact matches 
of the query words which were recorded in step 1. Each 
match is referred to as hit or hotspot. Each hit is 
recorded in a list for the third step of the BLAST 
algorithm with the identity of the corresponding query 
word and the location address where the hit occurred in 
the subject sequence. Considering the fact that current 
databases contains tens of thousands of subject 
sequences and that each subject sequence comprises 
hundreds/thousands of residues, it is obvious that this 
sequence database scanning process is a massively time 
consuming task.  
 

C. Step 3: Extension of the matches 
In this last step of the basic BLAST algorithm, we 
utilize the list of matches (hits) obtained in step 2 to 
form local alignments between the query sequence and 
the subject sequences in the database. Each entry in the 
list of hits contains the location address of a match in 
the subject sequence and the location address of the   
corresponding query word in the query sequence. 
Starting from these two location addresses, each of the 
hits in the list is extended on the query and 
corresponding subject sequence in both directions 
without allowing any gaps. In this extension, pairs of 
residues along the query and subject sequence are 
scored with a scoring matrix (e.g. BLOSUM50).  This 
process is illustrated in figure 1 with the following 
subject sequence: 
 

GVCRRPLKC 
  

 
Figure 1.  Step 3: Extension of matches 

 
In figure 1, the small box shows a hit where query word 
RRP is matched in the subject sequence. The query 
word RRP is similar to RKP word in the query 
sequence. The big box in figure 1 shows the extension 
which started from the edges of the small box.  As the 
extension proceeds in a 1 residue pair at a time in both 
directions and without allowing for any gaps, pairs of 
residues along the extension are scored using a scoring 
matrix (BLOSUM50 in our case).  These score terms 
are added up after each extension step and the extension 
is terminated when this total score falls a certain cut-off 
distance below the best total score obtained so far. 
Then, the extension goes back to its state which yielded 
the highest total score. As a result of this extension step, 
the related subject sequence is locally aligned to the 
query sequence (without gaps).  
 

D. BLAST with two-hit method 
The third step of the BLAST algorithm, i.e. the 
extension of the matches on the query and subject 
sequences, generally accounts for a very high 
percentage of the BLAST algorithm’s execution time. 
Hence, the two-hit method was devised to reduce the 
time spent in this extension step. The central idea of the 
two-hit method is to start the extension only when there 
are two non-overlapping hits on the same diagonal 
within distance A of each other. This is illustrated in 
figure 2 where only two non-overlapping hits on the 
same diagonal line which are close enough to each other 
are extended.   
 

 
Figure 2.  Ungapped extension of two close hits on the same diagonal 

lines [10] 
 

In other words, if the distance between any two non-
overlapping hits on the subject sequence is equal to the 
distance between the locations of the corresponding 
query words in the query sequence, then ungapped 
extension is triggered in both directions starting from 
both hits. The rest of the process is the same as 
explained in subsection II.C and the result is a local 
ungapped alignment of the query and subject sequences. 
This process is illustrated in figure 3 where A is equal 
to 5.  

 
Figure 3. Extension with the two-hit method 

In figure 3, the small boxes show two non-overlapping 
hits on the query and subject sequences within a 
distance of 4. Since the distance between the query 
words in the query sequence is equal to the distance 
between the two hits on the subject sequence, and since 
this distance between the two hits is less than 5, and 
bigger than 2, ungapped extension is started from the 
edges of the left and right hand sides of the small boxes 
respectively (see the big box in figure 3). 
To maintain the sensitivity of the general algorithm, the 
threshold value T used in the query pre-processing step 
of the algorithm is reduced. Hence, the number of query 
words recorded in this step will increase. As a result, 
while scanning the subject sequences in step 2, we will 
potentially find more hits than before. However, only a 
small fraction of these hits will have an associated 



second hit. Therefore, ungapped extension will be 
triggered less frequently compared to the case in the 
original BLAST algorithm.  The total execution time of 
BLAST is thus reduced.                                                                                                                               

III. Hardware Implementation of BLAST with 
the Two-Hit Method 

Figure 4 shows our hardware architecture which 
implements the BLAST algorithm with the two-hit 
method. Each block in the architecture implements one 
step of the algorithm as described in the above sections, 
except for the pre-processing query sequence step 
which is implemented by high level application 
software running on a host computer. The architecture 
consists of 12 HitFinderTwoHit blocks, 3 
UngappedExtender blocks and 1 Collector block all of 
which are running in parallel.  There are also 12 32K x 
5 bits subject sequence memories each of which holds a 
number of subject sequences. Note that each subject 
sequence memory belongs to one HitFinderTwoHit 
 block each of which is composed of 5 HitFinder blocks 
and 1 TwoHitMethod block. Each HitFinder block 
implements step 2 outlined in subsection II.B and scans 
its assigned subject sequence memory to find exact 
matches of the query words in the subject sequences. 
Each TwoHitMethod block performs the two-hit method 
procedure on hits coming from the 5 HitFinder blocks 
which are in the same HitFinderTwoHit block as the 
TwoHitMethod block. Besides these, each 
UngappedExtender block implements step 3 mentioned 

in subsection II.C and extends the two hits found by its 
four allocated TwoHitMethod blocks without allowing 
gaps, in order to obtain local ungapped alignments. 
Finally, a single Collector block collects high-scoring 
local ungapped alignments obtained in 3 
UngappedExtender blocks and sends their details to the 
host.  
The high level application software and all of the blocks 
which constitute the architecture shown in figure 4 are 
detailed in the following subsections.   

A. High Level Application Software 

Figure 5 shows the organization of our FPGA 
implementation for BLAST with two-hit method. There 
is application software running on the host computer 
which has many duties, the most important of which is 
the query sequence pre-processing as explained in 
section II.A. Besides running application software, host 
computer stores sequence database (e.g. Swiss-Prot) 
which is read as required by application software. In 
brief, the application software finds 3 letter long query 
words which score at least a threshold value T when 
aligned with words extracted from the query sequence. 
Then, the location address of each of these query words 
in the query sequence is placed at a vacant position in 
an upper word list and a lower word list pair depending 
on  the 2 most significant  letters and 2 least significant 
letters of the query word, respectively. Note that there 
are 5 upper-word and lower-word list pairs. 
 

 
Figure 4.  Hardware architecture for the BLAST algorithm with the two-hit method 

 
As it can be seen in figure 5, there are various FPGA 
configuration bit files for different threshold and cut-off 
value parameters. The first task of the application 
software is to pick the proper bit file, depending on the 
user-supplied algorithm parameters, from a database of 
FPGA configurations and load it on to the FPGA chip. 
Afterwards, the application software runs the hardware 
implementation in 4 modes. In mode 1, the application 
software sends each of the 5 upper word and lower 

word list pairs to each of the 5 HitFinder blocks in 
every HitFinderTwoHit block. In mode 2, a number of 
subject sequences read from the database on host are 
sent to the 12 available subject sequence memories on 
FPGA, depending on the subject sequence lengths. In 
mode 3, the application software sends a query 
sequence to the FPGA to be stored in memories within 
the 3 UngappedExtender blocks. Finally, the execution 
of the hardware implementation is launched in mode 4. 



After some time, the FPGA starts sending the high 
scoring subject sequences with their alignment scores. 
Then, application software prints these ungapped 
alignments onto the screen. This completes the first 
iteration of the operation. In the following iterations, 
different set of subject sequences are sent to the FPGA 
to be processed. Iterations terminate when there is no 
more subject sequence in the database awaiting to be 
sent to the FPGA.  

 
Figure 5.  Organization of our BLAST system 

 

B. HitFinder Block 
Figure 6 shows a simplified inner structure of a 
Hitfinder block. The architecture of this block is a 
modified version of the one shown in figure 7 of [18]. 
The major aim of this block is to scan each three letter 
long word of the subject sequences in order to find 
exact matches of the query words, as explained in 
subsection II.B. It is comprised of an upper word list 
memory, a lower word list memory, a shift register, a 
FIFO buffer and some control logic. Note that every 
Hitfinder block is assigned to a subject sequence 
memory whose address register (Counter) is unique in 
the HitFinderTwoHit block.   
At every clock cycle, 5-bit long residues of a subject 
sequence are shifted into the shift register (ShiftReg) 
from the assigned subject sequence memory and the 
address register of the subject sequence memory is 
incremented by one. The shift register is 15 bits long 
and hence it can hold 3 subject sequence residues at the 
same time. At every clock cycle, the 10 most significant 
bits and the 10 least significant bits of the shift register 
content are used as addresses for the upper word list 
memory and the lower word list memory respectively 
(see figure 6). If the resulting outputs of these memories 
are valid entries and are equal to each other, this means 
that a three-letter long word of the subject sequence 
which is currently held in the shift register matches 
exactly a query word whose location address in query 
sequence is given in the outputs of the word list 
memories. In this case, we have a hit condition which 
needs to be recorded for the following steps of the 
algorithm. Hence, we register the address of the query 

word in the query sequence and the location address of 
the hit in the subject sequence to a FIFO buffer named 
Hit FIFO with 3 control bits. These entries to   Hit 
FIFO are processed by the TwoHitMethod block 
assigned to the Hitfinder block (see figure 4). 

 

 
Figure 6. Simplified inner structure of the Hitfinder block 

C. TwoHitMethod Block 

Figure 7 shows a simplified inner structure of the 
TwoHitMethod block. Its aim is to find two non-
overlapping hits on the same diagonal within distance A 
of each other as explained in subsection II.D above. In 
this architecture, there are two FIFOs of the same length 
and same width namely Hit FIFO 1 and Hit FIFO 2 to 
which the same hit entries from the Hit FIFOs of the 5 
Hitfinder blocks (which belong to the same 
HitFinderTwoHit block) are stored one by one in turn 
starting from the Hit FIFO in the first Hitfinder block. 
The processing of hit entries commences when there are 
more than two hit entries in the FIFOs. For instance, the 
ath hit entry of   Hit FIFO 1 and bth hit entry of Hit 
FIFO 2 are taken and the hit addresses of these entries 
are subtracted from each other. If the result is less than 
3, we continue with the processing of the ath hit entry in 
Hit FIFO 1 and (b+1)th hit entry in Hit FIFO 2 in the 
next clock cycle. On the other hand, if the result is 
bigger than threshold value A, we continue with the 
processing of the (a+1)th hit entry in Hit FIFO 1 and 
(a+2)th hit entry in Hit FIFO 2 in the next clock cycle. 
However, if the result of this subtraction is between 3 
and threshold value A inclusive, we subtract the query 
word addresses in the hit entries. If the second 
subtraction result is not equal to the first one, this means 
that the two hits are not on the same diagonal, and 
hence we continue with the processing of the ath hit 
entry in Hit FIFO 1 and (b+1)th hit entry in Hit FIFO 2 
in the next clock cycle. If the two results are the same, 
however, this means that we have two close enough 
non-overlapping hits on the same diagonal which need 



to be recorded for the subsequent steps of the algorithm. 
The two hit cases are recorded to two FIFOs namely 
TwoHit FIFO1 and TwoHit FIFO 2. The address of the 
first hit and the distance between the two hits (Result 2 
in figure 7) are stored in TwoHit FIFO1 with 2 control 
bits, whereas the address of the first query word is 
stored in TwoHit FIFO 2. These two-hit entries to the 
TwoHit FIFOs are subsequently processed by the 
assigned UngappedExtender block.  

 

 
Figure 7.  Simplified inner structure of TwoHitMethod block 

D. UngappedExtender Block 
The UngappedExtender block implements the ungapped 
extension step of the BLAST algorithm as explained in 
subsection II.C above. Each of the three 
UngappedExtender blocks reads TwoHit FIFOs of its 
four assigned TwoHitMethod blocks in turn. When the 
UngappedExtender block detects a two-hit entry in the 
Twohit FIFOs of one TwoHitMethod block, the hit 
address of the first hit, the address of the first query 
word in the query sequence, and the distance between 
the two hits are all extracted from that entry to compute 
the start (seed) points of the outward ungapped 
extension in both directions, on both query and related 
subject sequence. Note that first residue pair of the first 
hit and the last residue pair of the second hit are the 
seed points of the outward ungapped extension on the 
query and related subject sequence. Afterwards, the 
inward ungapped extension starts from one start point to 
the other start point where the residue pairs along the 
extension are scored against a scoring matrix, with the 
intermediate scores accumulated. When the inward 

ungapped extension ends, the outward ungapped 
extension is launched in both directions. Here again, the 
residue pairs along the extension are scored, with the 
intermediate score terms accumulated, and added up 
with the total score obtained from the inward ungapped 
extension. The outward ungapped extension terminates 
either when the currently computed grand total score 
falls a certain cut-off value below the highest grand 
total score obtained so far, or when the extension 
reaches the end of the query or subject sequences in 
either direction. In this case, the ungapped extension 
retracts to its previous state which yielded the highest 
grand total score. If this highest grand total score 
exceeds a certain threshold value, the end points of this 
high scoring ungapped extension in both directions on 
both query and subject sequences are registered to two 
UngappedResult FIFOs with the score to be read by the 
single Collector block which sends these points as well 
as the score of the ungapped extension to the host. 

IV. Results 

Our BLAST design was captured in the Handel C 
language to which no specific resource inference or 
placement constraints were applied. Hence, it can be 
directly targeted to a variety of FPGA platforms (e.g.  
Xilinx or Altera FPGAs). The resulting core was 
compiled into EDIF by Agility’s DK5 SP2 suite from 
which FPGA bitstreams were generated using Xilinx 
ISE9.2 tool. 
The hardware implementation of the core was achieved 
on a Celoxica RCHTX FPGA board [17] which has a 
Xilinx Virtex 4 (xc4vlx160ff1148-11) FPGA chip and 
off-chip memory fitted on it. In our implementation, 
however, the off-chip memory was not used. The 
operation of the core was tested on the Swiss-Prot 
protein sequence database [16] with various query 
protein sequences.  
We have also implemented BLAST with the two-hit 
method algorithm in C in order to compare our 
hardware implementation with a pure software 
implementation. Table 1 presents timing performance 
figures of both hardware and software implementations 
for 8 random query protein sequences of various lengths 
searched in the Swiss-Prot database. The FPGA 
hardware was clocked at 20 MHz. The software 
implementation was executed on an Intel Centrino Duo 
2.2 GHz PC with 2 GB RAM. The same threshold and 
cut-off values were used in both hardware and software 
implementations at every step of the algorithm.  
 
Table 1. Timing performance figures of hardware and software 
implementations for 8 random protein sequences queried in Swiss-
Prot protein sequence database 

 
No of 

Residues 
in Query 

Sequence 

No of 
Query 
words 

FPGA 
Execution 
time (sec) 

Software 
execution 
time (sec) 

FPGA 
Speed-

up 

1. Query 
Sequence 111 116 3.49 78.85 22.59 

2. Query 
Sequence 368 136 3.50 137.98 39.42 

3. Query 
Sequence 459 263 3.52 209.84 59.61 

4. Query 
Sequence 565 137 3.45 177.57 51.47 



5. Query 
Sequence 635 140 3.46 179.45 51.86 

6. Query 
Sequence 746 117 3.57 209.25 58.61 

7. Query 
Sequence 864 240 3.52 286.47 81.38 

8. Query 
Sequence 985 53 3.48 197.87 56.86 

As it can be seen from table 1, our FPGA 
implementation results in substantial speed-up 
compared to software, ranging from 81x to 22x (the 
speed-up figure depends on the query sequence). Note 
that the FPGA execution times fluctuate around 3.5 
seconds hence showing experimentally that it is 
predominantly dependent on the size of the database 
rather than on the size of the query sequence or number 
of query words. 
On average, our core is 52 times faster than equivalent 
software implementations. The reason behind this high 
speed-up figure of the FPGA implementation, despite 
the huge difference in clock frequency, is due to the 
high level of process parallelism on FPGA. Besides, the 
complete design, implementation and testing was 
achieved in less than 5 months by a first year PhD 
student. This shows that reconfigurable technology can 
be an efficacious and efficient platform for high 
performance biological sequence analysis. 

V. Conclusion 

In this paper, the detailed FPGA implementation of the 
BLAST algorithm with two-hit method has been 
presented. This is the first FPGA implementation of this 
variant of BLAST ever reported in the literature, to our 
knowledge. The hardware architecture is composed of 
various blocks each of which performs a specific step of 
the algorithm in parallel. Moreover, the FPGA core is 
parameterized in terms of the sequence lengths, match 
score, gap penalties, cut-off and threshold values. The 
resulting implementation outperforms equivalent 
desktop-based software by 52 times on average. 
Furthermore, our core was designed in the Handel-C 
language, thus making it FPGA-platform-independent. 
This means that our core can be ported to other FPGA 
architectures from different vendors very easily. 
Finally, it is worth mentioning that the whole design, 
implementation and testing design took less than 5 
person-months to achieve, which shows that FPGAs can 
be an economic platform for high performance 
biological sequence alignment. 
The work presented in this paper is part of a bigger 
project where the computational performance and re-
configurability features of FPGAs are harnessed in the 
field of bioinformatics and computational biology. 
Future work includes the extension of this core to 
support the Gapped BLAST and Position Specific 
Iterated BLAST (PSI-BLAST) algorithms. 
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