
High Performance FPGA-based Core for BLAST Sequence Alignment
with the Two-Hit Method

Server Kasap, Khaled Benkrid, Senior Member, IEEE, Ying Liu

Abstract--This paper presents the design and

implementation of a high performance FPGA-based core
for BLAST sequence alignment with the two-hit method.
BLAST with two-hit is a very widely used heuristic
biological sequence alignment algorithm, and this paper is
the first reported FPGA implementation of it, to our
knowledge. The architecture of our core is parameterized
in terms of the sequence lengths, match scores, gap
penalties, and cut-off and threshold values. It is composed
of various blocks each of which performs one step of the
algorithm in parallel with the others. This results in a high
performance and efficient FPGA implementation, which
outperforms equivalent software implementations by one
order of magnitude or more. Real hardware
implementations show that our core is 52 times faster than
equivalent software implementations, on average.
Furthermore, the core was captured in an FPGA-
platform-independent language, namely the Handel-C
language, to which no specific resource inference or
placement constraints were applied. Hence, the same code
can be easily ported to different FPGA families and
architectures.

I. Introduction

In Bioinformatics and Computational biology (BCB),
biological sequence alignment is a very common task
where subject sequences from a large database are
aligned to a query sequence to find similarities between
the query sequence and the sequences in the database
[1]. Obtaining information about a newly discovered
biological sequence (i.e. Protein, DNA or RNA) from
other known sequences is a major application of this
operation. For example, if a new sequence is found to
be similar to a known cancerous sequence, then
information regarding the functionality of the new
sequence can be deduced. This is obviously useful in
early disease diagnosis and drug engineering.
Furthermore, biological sequence alignment can be
utilized in the study of evolutionary development and
history of species [1] [2].
Sequence alignment is a computationally intensive
operation, however. This is exacerbated by the
exponential growth in biological sequence databases.
Therefore, desktop computer systems cannot, usually,
perform this task within acceptable execution
timeframes. Hence, faster computing platforms are
required.

Manuscript received July 5, 2008.
 Server Kasap is with the University of Edinburgh, Mayfield Road,
Edinburgh EH9 3JL, Scotland, UK. He is a PhD student in School of
Electronics and Engineering (E-mail: s.kasap@ed.ac.uk).
Khaled Benkrid is with the University of Edinburgh, Mayfield Road,
Edinburgh EH9 3JL, Scotland, UK. He is a lecturer in the School of
Engineering and Electronics (e-mail: k.benkrid@ed.ac.uk).
 Ying Liu is with the University of Edinburgh, Mayfield Road,
Edinburgh EH9 3JL, Scotland, UK. She is a PhD student in School of
Electronics and Engineering (E-mail: y.liu@ed.ac.uk).

Recently, high performance reconfigurable hardware in
the form of Field Programmable Gate Arrays (FPGAs)
has been proposed as an efficacious and efficient
implementation platform for sequence alignment
algorithms [3] [4] [5]. Indeed, their ASIC-like
performance coupled with their reprogrammability
feature make FPGAs capable of providing high speed-
ups compared to general purpose processors, with the
added convenience of reprogrammability.
There are various biological sequence alignment
algorithms in the literature. Some of these are
exhaustive and give optimal alignments (e.g.
Needleman-Wunsch [6], Smith-Waterman [7]) and
others are heuristic and give sub-optimal alignments
(e.g. FASTA [8], BLAST [9]). In this paper, we
concentrate on Basic Local Alignment Search Tool
(BLAST) which is a heuristic local alignment
algorithm. It is much faster than ordinary exhaustive
dynamic programming algorithms, although it produces
local alignments which are not always optimal. The
design and implementation of BLAST with two-hit
method [10] (a variant of BLAST) is presented in this
paper. To our knowledge, this is the first reported
FPGA implementation of this algorithm variant. It
results in 52x speed-up over equivalent software
implementations on average. Besides, the design was
captured in a FPGA-platform-independent language,
namely Handel-C language [13], which makes it
portable across a number of FPGA architectures (e.g.
from Xilinx or Altera).
In the remainder of this paper, essential background
information on the general BLAST algorithm will be
presented first. Following that, the design and
implementation of our FPGA core for BLAST with the
two-hit method will be elaborated. After that, timing
performance of our core implementation is presented
and compared with equivalent software implementation
running on desktop computers. Finally, conclusions are
laid out with plans for future work.

II. Background

Biological sequences evolve through mutation,
selection and random genetic drift [11]. Mutation, in
particular manifests itself through 3 main processes:
• Substitution of residues: Residue A in the sequence

is substituted by another residue B.
• Insertion of residues: New residues are inserted into

the sequence.
• Deletion of residues: Existing residues in the

sequence are deleted.
Insertions and deletions result in gaps which are taken
into consideration when aligning biological sequences.
The degree of alignment of biological sequences is
measured by a score which is obtained by the
summation of score terms of each aligned pair of

residues with possible gap penalty terms. Score terms
for each aligned residue pair are obtained from
probabilistic models which are stored in score or
substitution matrices such as BLOSUM50 [1]. The
latter is a 20x20 matrix for protein sequence residues.
On the other hand, gap penalties depend on the length
of the gap and are independent of gap residues. There
are two main types of gap penalties:
• Linear gap penalty: The cost of a gap of length

g is given by following linear function:

Penalty (g) = -g*d

• Affine gap penalty: A constant penalty is given
for opening a new gap while a linear and
smaller penalty is given for subsequent gap
extensions. The cost function of the affine gap
penalty is hence given by the following affine
equation:

Penalty (g) = -d-(g-1)*e

BLAST stands for Basic Local Alignment Tool. It is

developed on the ideas of FASTA. It is used for
searching both protein and DNA sequence databases for
sequence similarities. It is a heuristic local alignment
algorithm which approximates the dynamic
programming Smith-Waterman algorithm. Since it is a
heuristic algorithm, the local alignment it produces is
not always optimal. However, it is much faster than the
Smith-Waterman algorithm. As a result, BLAST and its
variants are some of the most widely used sequence
search tools.
The central idea of the BLAST algorithm is that a
statistically significant alignment is likely to contain a
high-scoring pair of aligned words. BLAST first finds
these high scoring pairs of aligned words and then
extends them to the real alignment. These words are k-
residues long where k is different for DNA and protein
sequences. The default k values for DNA and protein
sequences are 11 and 3 respectively. There are 3 basic
steps of BLAST:
• Pre-processing the query sequence: All k-long

words in the query sequence are extracted. Then,
words that are similar to these are found. We call
the overall results the k-words.

• Scanning the subject sequences: All the subject
sequences in the database are scanned one by
one for matches with the obtained k-words.

• Extension of the matches: All matches in the
subject sequences are extended to form local
alignments between the query sequence and
related subject sequences in the database.

In subsections II.A-II.C, all basic steps of the BLAST
algorithm mentioned above will be explained in more
detail.
It is worth mentioning at this stage that the
aforementioned basic steps belong to the original
BLAST algorithm. However, several variants of the
original algorithm have been devised over the years
with the aim of increasing its sensitivity while keeping
run-times at minimum. All of these variants include the
3 basic steps of the original algorithm, with the addition

of new steps. In this paper, we discuss one of these
variants, namely BLAST with two-hit method which is
described in subsection II.D.

A. Step 1: Pre-processing the Query Sequence
An example protein sequence which has 9 residues (or
amino acids) is shown below:

LVNRKPVVP

In this first step, we take the query sequence and chop it
into overlapping k-words as illustrated below for the
query sequence shown above, with k = 3:

Word 0: LVN

Word 1: VNR

Word 2: NRK

Word 3: RKP

Word 4: KPV

Word 5: PVV

Word 6: VVP

As it can be seen, there are 7 words extracted from the
query sequence which are 3 residues long. In general,
the number of words extracted equals (m-k) + 1 where
m is the number of residues in the query sequence.
After this, words similar to each of these extracted
words are found through the usage of specific scoring
matrix.
Words which score at least threshold value T with the
scoring matrix when aligned with the words extracted
from the query sequence are regarded to be similar to
these extracted words. Similar words for each extracted
word are found and then recorded with the location
address of the corresponding extracted word in the
query sequence tagged to them. This process is
illustrated below with the first extracted word shown
above (i.e. LVN) using the BLOSUM50 scoring matrix
for the case where T is 12:

 Word 0: L V N
 4 + 4 + 6 = 14
Query word 1: L V N

 Word 0: L V N
 2 + 4 + 6 = 12
Query word 2: M V N

 Word 0: L V N
 4 + 4 + 1 = 9
Query word 3: L V S
Query word 1 and query word 2 score 14 and 12
respectively when aligned with the first extracted word
(LVN) from the query sequence. Since score values are
over or equal to 12, query word 1 and query word 2 are
recorded with the location address of the first extracted
word in the query sequence, which is 0. However, query
word 3 is discarded since it scores less than 12 when
aligned with the extracted word. All recorded similar
words are used in step 2 of the BLAST algorithm.

B. Step 2: Scanning the subject sequences
In this step, all subject sequences in the database are
scanned one by one to find the possible exact matches
of the query words which were recorded in step 1. Each
match is referred to as hit or hotspot. Each hit is
recorded in a list for the third step of the BLAST
algorithm with the identity of the corresponding query
word and the location address where the hit occurred in
the subject sequence. Considering the fact that current
databases contains tens of thousands of subject
sequences and that each subject sequence comprises
hundreds/thousands of residues, it is obvious that this
sequence database scanning process is a massively time
consuming task.

C. Step 3: Extension of the matches
In this last step of the basic BLAST algorithm, we
utilize the list of matches (hits) obtained in step 2 to
form local alignments between the query sequence and
the subject sequences in the database. Each entry in the
list of hits contains the location address of a match in
the subject sequence and the location address of the
corresponding query word in the query sequence.
Starting from these two location addresses, each of the
hits in the list is extended on the query and
corresponding subject sequence in both directions
without allowing any gaps. In this extension, pairs of
residues along the query and subject sequence are
scored with a scoring matrix (e.g. BLOSUM50). This
process is illustrated in figure 1 with the following
subject sequence:

GVCRRPLKC

Figure 1. Step 3: Extension of matches

In figure 1, the small box shows a hit where query word
RRP is matched in the subject sequence. The query
word RRP is similar to RKP word in the query
sequence. The big box in figure 1 shows the extension
which started from the edges of the small box. As the
extension proceeds in a 1 residue pair at a time in both
directions and without allowing for any gaps, pairs of
residues along the extension are scored using a scoring
matrix (BLOSUM50 in our case). These score terms
are added up after each extension step and the extension
is terminated when this total score falls a certain cut-off
distance below the best total score obtained so far.
Then, the extension goes back to its state which yielded
the highest total score. As a result of this extension step,
the related subject sequence is locally aligned to the
query sequence (without gaps).

D. BLAST with two-hit method
The third step of the BLAST algorithm, i.e. the
extension of the matches on the query and subject
sequences, generally accounts for a very high
percentage of the BLAST algorithm’s execution time.
Hence, the two-hit method was devised to reduce the
time spent in this extension step. The central idea of the
two-hit method is to start the extension only when there
are two non-overlapping hits on the same diagonal
within distance A of each other. This is illustrated in
figure 2 where only two non-overlapping hits on the
same diagonal line which are close enough to each other
are extended.

Figure 2. Ungapped extension of two close hits on the same diagonal

lines [10]

In other words, if the distance between any two non-
overlapping hits on the subject sequence is equal to the
distance between the locations of the corresponding
query words in the query sequence, then ungapped
extension is triggered in both directions starting from
both hits. The rest of the process is the same as
explained in subsection II.C and the result is a local
ungapped alignment of the query and subject sequences.
This process is illustrated in figure 3 where A is equal
to 5.

Figure 3. Extension with the two-hit method

In figure 3, the small boxes show two non-overlapping
hits on the query and subject sequences within a
distance of 4. Since the distance between the query
words in the query sequence is equal to the distance
between the two hits on the subject sequence, and since
this distance between the two hits is less than 5, and
bigger than 2, ungapped extension is started from the
edges of the left and right hand sides of the small boxes
respectively (see the big box in figure 3).
To maintain the sensitivity of the general algorithm, the
threshold value T used in the query pre-processing step
of the algorithm is reduced. Hence, the number of query
words recorded in this step will increase. As a result,
while scanning the subject sequences in step 2, we will
potentially find more hits than before. However, only a
small fraction of these hits will have an associated

second hit. Therefore, ungapped extension will be
triggered less frequently compared to the case in the
original BLAST algorithm. The total execution time of
BLAST is thus reduced.

III. Hardware Implementation of BLAST with
the Two-Hit Method

Figure 4 shows our hardware architecture which
implements the BLAST algorithm with the two-hit
method. Each block in the architecture implements one
step of the algorithm as described in the above sections,
except for the pre-processing query sequence step
which is implemented by high level application
software running on a host computer. The architecture
consists of 12 HitFinderTwoHit blocks, 3
UngappedExtender blocks and 1 Collector block all of
which are running in parallel. There are also 12 32K x
5 bits subject sequence memories each of which holds a
number of subject sequences. Note that each subject
sequence memory belongs to one HitFinderTwoHit
 block each of which is composed of 5 HitFinder blocks
and 1 TwoHitMethod block. Each HitFinder block
implements step 2 outlined in subsection II.B and scans
its assigned subject sequence memory to find exact
matches of the query words in the subject sequences.
Each TwoHitMethod block performs the two-hit method
procedure on hits coming from the 5 HitFinder blocks
which are in the same HitFinderTwoHit block as the
TwoHitMethod block. Besides these, each
UngappedExtender block implements step 3 mentioned

in subsection II.C and extends the two hits found by its
four allocated TwoHitMethod blocks without allowing
gaps, in order to obtain local ungapped alignments.
Finally, a single Collector block collects high-scoring
local ungapped alignments obtained in 3
UngappedExtender blocks and sends their details to the
host.
The high level application software and all of the blocks
which constitute the architecture shown in figure 4 are
detailed in the following subsections.

A. High Level Application Software

Figure 5 shows the organization of our FPGA
implementation for BLAST with two-hit method. There
is application software running on the host computer
which has many duties, the most important of which is
the query sequence pre-processing as explained in
section II.A. Besides running application software, host
computer stores sequence database (e.g. Swiss-Prot)
which is read as required by application software. In
brief, the application software finds 3 letter long query
words which score at least a threshold value T when
aligned with words extracted from the query sequence.
Then, the location address of each of these query words
in the query sequence is placed at a vacant position in
an upper word list and a lower word list pair depending
on the 2 most significant letters and 2 least significant
letters of the query word, respectively. Note that there
are 5 upper-word and lower-word list pairs.

Figure 4. Hardware architecture for the BLAST algorithm with the two-hit method

As it can be seen in figure 5, there are various FPGA
configuration bit files for different threshold and cut-off
value parameters. The first task of the application
software is to pick the proper bit file, depending on the
user-supplied algorithm parameters, from a database of
FPGA configurations and load it on to the FPGA chip.
Afterwards, the application software runs the hardware
implementation in 4 modes. In mode 1, the application
software sends each of the 5 upper word and lower

word list pairs to each of the 5 HitFinder blocks in
every HitFinderTwoHit block. In mode 2, a number of
subject sequences read from the database on host are
sent to the 12 available subject sequence memories on
FPGA, depending on the subject sequence lengths. In
mode 3, the application software sends a query
sequence to the FPGA to be stored in memories within
the 3 UngappedExtender blocks. Finally, the execution
of the hardware implementation is launched in mode 4.

After some time, the FPGA starts sending the high
scoring subject sequences with their alignment scores.
Then, application software prints these ungapped
alignments onto the screen. This completes the first
iteration of the operation. In the following iterations,
different set of subject sequences are sent to the FPGA
to be processed. Iterations terminate when there is no
more subject sequence in the database awaiting to be
sent to the FPGA.

Figure 5. Organization of our BLAST system

B. HitFinder Block
Figure 6 shows a simplified inner structure of a
Hitfinder block. The architecture of this block is a
modified version of the one shown in figure 7 of [18].
The major aim of this block is to scan each three letter
long word of the subject sequences in order to find
exact matches of the query words, as explained in
subsection II.B. It is comprised of an upper word list
memory, a lower word list memory, a shift register, a
FIFO buffer and some control logic. Note that every
Hitfinder block is assigned to a subject sequence
memory whose address register (Counter) is unique in
the HitFinderTwoHit block.
At every clock cycle, 5-bit long residues of a subject
sequence are shifted into the shift register (ShiftReg)
from the assigned subject sequence memory and the
address register of the subject sequence memory is
incremented by one. The shift register is 15 bits long
and hence it can hold 3 subject sequence residues at the
same time. At every clock cycle, the 10 most significant
bits and the 10 least significant bits of the shift register
content are used as addresses for the upper word list
memory and the lower word list memory respectively
(see figure 6). If the resulting outputs of these memories
are valid entries and are equal to each other, this means
that a three-letter long word of the subject sequence
which is currently held in the shift register matches
exactly a query word whose location address in query
sequence is given in the outputs of the word list
memories. In this case, we have a hit condition which
needs to be recorded for the following steps of the
algorithm. Hence, we register the address of the query

word in the query sequence and the location address of
the hit in the subject sequence to a FIFO buffer named
Hit FIFO with 3 control bits. These entries to Hit
FIFO are processed by the TwoHitMethod block
assigned to the Hitfinder block (see figure 4).

Figure 6. Simplified inner structure of the Hitfinder block

C. TwoHitMethod Block

Figure 7 shows a simplified inner structure of the
TwoHitMethod block. Its aim is to find two non-
overlapping hits on the same diagonal within distance A
of each other as explained in subsection II.D above. In
this architecture, there are two FIFOs of the same length
and same width namely Hit FIFO 1 and Hit FIFO 2 to
which the same hit entries from the Hit FIFOs of the 5
Hitfinder blocks (which belong to the same
HitFinderTwoHit block) are stored one by one in turn
starting from the Hit FIFO in the first Hitfinder block.
The processing of hit entries commences when there are
more than two hit entries in the FIFOs. For instance, the
ath hit entry of Hit FIFO 1 and bth hit entry of Hit
FIFO 2 are taken and the hit addresses of these entries
are subtracted from each other. If the result is less than
3, we continue with the processing of the ath hit entry in
Hit FIFO 1 and (b+1)th hit entry in Hit FIFO 2 in the
next clock cycle. On the other hand, if the result is
bigger than threshold value A, we continue with the
processing of the (a+1)th hit entry in Hit FIFO 1 and
(a+2)th hit entry in Hit FIFO 2 in the next clock cycle.
However, if the result of this subtraction is between 3
and threshold value A inclusive, we subtract the query
word addresses in the hit entries. If the second
subtraction result is not equal to the first one, this means
that the two hits are not on the same diagonal, and
hence we continue with the processing of the ath hit
entry in Hit FIFO 1 and (b+1)th hit entry in Hit FIFO 2
in the next clock cycle. If the two results are the same,
however, this means that we have two close enough
non-overlapping hits on the same diagonal which need

to be recorded for the subsequent steps of the algorithm.
The two hit cases are recorded to two FIFOs namely
TwoHit FIFO1 and TwoHit FIFO 2. The address of the
first hit and the distance between the two hits (Result 2
in figure 7) are stored in TwoHit FIFO1 with 2 control
bits, whereas the address of the first query word is
stored in TwoHit FIFO 2. These two-hit entries to the
TwoHit FIFOs are subsequently processed by the
assigned UngappedExtender block.

Figure 7. Simplified inner structure of TwoHitMethod block

D. UngappedExtender Block
The UngappedExtender block implements the ungapped
extension step of the BLAST algorithm as explained in
subsection II.C above. Each of the three
UngappedExtender blocks reads TwoHit FIFOs of its
four assigned TwoHitMethod blocks in turn. When the
UngappedExtender block detects a two-hit entry in the
Twohit FIFOs of one TwoHitMethod block, the hit
address of the first hit, the address of the first query
word in the query sequence, and the distance between
the two hits are all extracted from that entry to compute
the start (seed) points of the outward ungapped
extension in both directions, on both query and related
subject sequence. Note that first residue pair of the first
hit and the last residue pair of the second hit are the
seed points of the outward ungapped extension on the
query and related subject sequence. Afterwards, the
inward ungapped extension starts from one start point to
the other start point where the residue pairs along the
extension are scored against a scoring matrix, with the
intermediate scores accumulated. When the inward

ungapped extension ends, the outward ungapped
extension is launched in both directions. Here again, the
residue pairs along the extension are scored, with the
intermediate score terms accumulated, and added up
with the total score obtained from the inward ungapped
extension. The outward ungapped extension terminates
either when the currently computed grand total score
falls a certain cut-off value below the highest grand
total score obtained so far, or when the extension
reaches the end of the query or subject sequences in
either direction. In this case, the ungapped extension
retracts to its previous state which yielded the highest
grand total score. If this highest grand total score
exceeds a certain threshold value, the end points of this
high scoring ungapped extension in both directions on
both query and subject sequences are registered to two
UngappedResult FIFOs with the score to be read by the
single Collector block which sends these points as well
as the score of the ungapped extension to the host.

IV. Results

Our BLAST design was captured in the Handel C
language to which no specific resource inference or
placement constraints were applied. Hence, it can be
directly targeted to a variety of FPGA platforms (e.g.
Xilinx or Altera FPGAs). The resulting core was
compiled into EDIF by Agility’s DK5 SP2 suite from
which FPGA bitstreams were generated using Xilinx
ISE9.2 tool.
The hardware implementation of the core was achieved
on a Celoxica RCHTX FPGA board [17] which has a
Xilinx Virtex 4 (xc4vlx160ff1148-11) FPGA chip and
off-chip memory fitted on it. In our implementation,
however, the off-chip memory was not used. The
operation of the core was tested on the Swiss-Prot
protein sequence database [16] with various query
protein sequences.
We have also implemented BLAST with the two-hit
method algorithm in C in order to compare our
hardware implementation with a pure software
implementation. Table 1 presents timing performance
figures of both hardware and software implementations
for 8 random query protein sequences of various lengths
searched in the Swiss-Prot database. The FPGA
hardware was clocked at 20 MHz. The software
implementation was executed on an Intel Centrino Duo
2.2 GHz PC with 2 GB RAM. The same threshold and
cut-off values were used in both hardware and software
implementations at every step of the algorithm.

Table 1. Timing performance figures of hardware and software
implementations for 8 random protein sequences queried in Swiss-
Prot protein sequence database

No of

Residues
in Query

Sequence

No of
Query
words

FPGA
Execution
time (sec)

Software
execution
time (sec)

FPGA
Speed-

up

1. Query
Sequence 111 116 3.49 78.85 22.59

2. Query
Sequence 368 136 3.50 137.98 39.42

3. Query
Sequence 459 263 3.52 209.84 59.61

4. Query
Sequence 565 137 3.45 177.57 51.47

5. Query
Sequence 635 140 3.46 179.45 51.86

6. Query
Sequence 746 117 3.57 209.25 58.61

7. Query
Sequence 864 240 3.52 286.47 81.38

8. Query
Sequence 985 53 3.48 197.87 56.86

As it can be seen from table 1, our FPGA
implementation results in substantial speed-up
compared to software, ranging from 81x to 22x (the
speed-up figure depends on the query sequence). Note
that the FPGA execution times fluctuate around 3.5
seconds hence showing experimentally that it is
predominantly dependent on the size of the database
rather than on the size of the query sequence or number
of query words.
On average, our core is 52 times faster than equivalent
software implementations. The reason behind this high
speed-up figure of the FPGA implementation, despite
the huge difference in clock frequency, is due to the
high level of process parallelism on FPGA. Besides, the
complete design, implementation and testing was
achieved in less than 5 months by a first year PhD
student. This shows that reconfigurable technology can
be an efficacious and efficient platform for high
performance biological sequence analysis.

V. Conclusion

In this paper, the detailed FPGA implementation of the
BLAST algorithm with two-hit method has been
presented. This is the first FPGA implementation of this
variant of BLAST ever reported in the literature, to our
knowledge. The hardware architecture is composed of
various blocks each of which performs a specific step of
the algorithm in parallel. Moreover, the FPGA core is
parameterized in terms of the sequence lengths, match
score, gap penalties, cut-off and threshold values. The
resulting implementation outperforms equivalent
desktop-based software by 52 times on average.
Furthermore, our core was designed in the Handel-C
language, thus making it FPGA-platform-independent.
This means that our core can be ported to other FPGA
architectures from different vendors very easily.
Finally, it is worth mentioning that the whole design,
implementation and testing design took less than 5
person-months to achieve, which shows that FPGAs can
be an economic platform for high performance
biological sequence alignment.
The work presented in this paper is part of a bigger
project where the computational performance and re-
configurability features of FPGAs are harnessed in the
field of bioinformatics and computational biology.
Future work includes the extension of this core to
support the Gapped BLAST and Position Specific
Iterated BLAST (PSI-BLAST) algorithms.

VI. References

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G.,
‘Biological Sequence Analysis: Probabilistic Models for
Proteins and Nucleic Acids’, Cambridge University
Press, Cambridge UK, 1998

[2] Hein, J. ‘A New Methodology that simultaneously
aligns and reconstructs ancestral sequences for any
number of homologous sequences, when a phylogeny is
given’. Journal of Molecular Biology, 6, pp.649-668,
1989

[3] Hoang, D.T. ‘Searching genetic databases on Splash 2’,
in Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 185-191, 1993.

[4] Gokhale, M. et al. 'Processing in memory: The Terasys
massively parallel PIM array', Computer, 28 (4), pp. 23-
31, April 1995.

[5] TimeLogic Corporation, ‘Decypher Scalable, High
Performance Biocomputing Solutions’,
http://www.timelogic.com

[6] Needleman, S. and Wunsch, C. ‘A general method
applicable to the search for similarities in the amino acid
sequence of two sequences’ Journal of Molecular
Biology, 48(3), pp.443-453, 1970

[7] Smith, T.F. and Waterman, M.S. Identification of
common molecular subsequences. J. Mol. Biol., 147,
pp.195-197, 1981

[8] Pearson, W.R. and Lipman, D.J. ‘FASTA: Improved
tools for biological sequence comparison’, Proceedings
of the National Academy of Sciences, USA 85, pp.
2444-2448, 1988

[9] Altschul, S. F., Gish, W., Miller, W., Myers, E.W. and
Lipman, D.J. ‘Basic Local Alignment Search Tool’,
Journal of Molecular Biology,215, pp. 403-410, 1990

[10] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang,
J., Zhang, Z., Miller, W., and Lipman, D. J. ‘Gapped
BLAST and PSI-BLAST: a new generation of protein
database search programs’, Nucleic Acid Research,
Oxford Journals, 25(17), pp. 3389-3402, 1997

[11] Harrison G. A., Tanner, J. M., Pilbeam D. R., and
Baker, P. T. 'Human Biology: An introduction to human
evolution, variation, growth, and adaptability', Oxford
Science Publications, 1988

[12] Chow, E., Hunkapiller, T., Peterson, J., Waterman, M.S.
‘Biological Information Signal Processor’, Proceedings
of Application-Specific Systems, Architectures, and
Processors, ASAP ASAP’91, pp. 144-160, 1991

[13] The Handel-C Language Reference Manual, Agility Plc,
http://www.agilityds.com

[14] Kung, S. Y. ‘VLSI Array Processors’, Prentice-Hall,
1988

[15] Moldovan, D. I. and Fortes, J. A. B. ‘Partitioning and
mapping of algorithms into fixed size systolic arrays’,
IEEE Transactions on Computers, 35(1), pp. 1-12,
January, 1986

[16] Boeckmann, B., et al., ‘The SWISS-PROT protein
knowledgebase and its supplement TrEMBL’ in 2003
Nucleic Acids Research, Vol.31, pp. 365-370, 2003

[17] RCHTX FPGA PCI Board Reference Manual, Celoxica
Plc, http://www.celoxica.com

[18] Sotiriades, E.,Dollas,’A General Reconfigurable
Architecture for the BLAST Algorithm’, Journal of
VLSI Signal Processing 48, 189–208, 2007

