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Abstract—The chemical master equation, which is
often considered as an accurate stochastic description
of general chemical systems, usually imposes intensive
computational requirements when used to characterize
molecular biological systems. The major challenge
comes from the curse of dimensionally, which has been
tackled by a few research papers. The essential goal is
to aggregate the system efficiently with limited approx-
imation error. This paper presents an adaptive way to
implement the aggregation process using information
collected from Monte Carlo methods. Numerical re-
sults show the effectiveness of the proposed algorithm
despite the lack of explicit estimation of approximation
error.

I. INTRODUCTION

Efficient analysis tools for chemical systems have always
been of great interest to the systems biology community.
Traditional deterministic modeling like reaction rate
equations often fails to capture the inherent (molecular
level) randomness of the biological system. On the
other hand, more accurate stochastic models often impose
intensive computational requirements. Algorithms for
solving stochastic models for chemical reaction systems
can be roughly divided into two categories. One approach
is to simulate the system using Monte Carlo methods, the
most famous one of which is the stochastic state simulation
algorithm (SSA) [1]. These methods simulate one possible
trajectory at a time at a relatively low computational cost.
However, many trajectories need to be simulated to get an
accurate estimation of statistical parameters. The second
approach is to solve the chemical master equation ([2],[3]),
which is basically an ordinary differential equation (ODE)
system for the probability distribution function describing
the evolution of the chemical system. Every possible state
is taken into account in the distribution function, thus the
size of the ODE system is often huge.

Suppose a chemical system consists of D different
species and R reaction channels. If the size of the
state space of each species S; is N;, then the total state
space size N = Ny X Ny X --+ X Np. As the number
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of species increases, the total state space size increases
exponentially, known as the curse of dimensionality. Let
p(z,t) denote the probability mass of the state = at time
t, where x = (x1,22,...,2p) € Zn, X Ly, X -+ X LN, 1S
a vector of integers representing one possible state of the
system. It is worth noticing that there are cases where the
number of molecules of a certain species S; does not lie
in [0, N; — 1] (i.e., the integers 0, 1, ..., N; — 1 represent
an encoding of the actual number of molecules) and/or
the whole state space is not rectangular or even finite.
However, most of the discussion here is still valid under
those problem settings.

The chemical master equation (CME), which is derived
from the Markov property of the underlying stochastic
process ([4]-[7]), is the ODE system describing the time
evolution of the function p(zx,t) for every possible state x,

dP(X,t)
= = P(x0Q,

where P(X,t) = (p(z™,t),p(z?,t),...) is the com-
plete probability vector at time ¢ and the vector
X = (ac(l),x(z),...) is a particular enumeration of the
state space. Here (Q is a constant sparse square matrix
(called the infinitesimal generator of the system) with each
of its components g;; (¢ # j) denoting the instantaneous
rate at which the system makes one transition from one
state (Y to another state z() through one of the R
prescribed reaction channels. Each row of the matrix
@ sums up to zero, i.e., g; = —Zj# ¢ij, so that the
whole system satisfies the conservation law of the overall
probability mass. Now, each row of @ has at most R + 1
nonzero entries, hence the matrix @ is extremely sparse.

For example, the CME for a simple birth-death process
can be written as

/A
z 20
Op(x,t)

5 = kp(x—1,8)+p(z+Dp(z+1,t) — (k+px)p(z, t).

Various approximation methods have been proposed
to reduce the size of the matrix ). Consider aggrega-
tion/disaggregation operators E and F. The aggregation
operator E maps any complete probability vector P(X,t)

to an aggregated probability vector P(Y,t) and the disag-
gregation operator F' does the opposite. In the discrete
case, the operators F and F are just matrices. Now,
the original ODE system can be condensed into a much



smaller ODE system corresponding to the aggregated
state space Y,

dP(Y,t) -
—g = PVOFQE.

Note that this is essentially the model order reduction
problem of control theory or mechanics. There are many
different ways to choose appropriate E and F', determined

by the measure of the distance from P(X,t) to P(Y,t).
One idea, called the finite state projection algorithm
([8]-[10]), is to choose E and F such that FQE is a
submatrix of the original matrix Q. Let J C {1,2,..., N},
and denote by X; the subvector of X formed from the
indices in J, and by @Q;; the submatrix of Q with rows
and columns indexed by J. Let Y = (yM), 43 ..)) = X,
denote the finite vector of states of specific interest,
and the matrix @;; be the submatrix of the matrix @

corresponding to the vector Y. Then with Q =QyJ,

P =Py, and Y = X, the condensed system to be solved
is

dP(Y,t) 50 5
- P(Y, 1)Q.

Since @ is only part of the matrix @, the overall
probability mass for the new system no longer satisfies
the conservation law. From a simulation point of view, in
this new system any trajectory that reaches outside of the
states Y before time t is lost forever. That is the major
drawback of the finite state projection method. However,
if the size of the original state space is infinite, this is the
only way to reduce the original problem to a finite state
problem.

Another idea is to first divide the state space into bins
using grids, then let the aggregation operator E map
states in the same bin into a single state in the reduced
system [11]. The probability mass of each single (reduced)
state thus equals the sum of the probability masses of
all those states mapped into it. One easy way to choose
the corresponding disaggregation matrix F' is to divide
the probability mass of each single (reduced) state evenly
into parts and assign this value as the probability mass
of every state in the same bin that maps to that single
(reduced) state by operator E.

In most chemical systems, it often happens that the
probability masses of nearby states are very close to each
other, therefore it is reasonable to combine these nearby
states together to reduce the size of the problem. A
more plausible way would be to apply the above reduction
only to the part of the state space where probability
mass is low and remains almost constant over time, not
to the part of the state space where probability mass is
high and changes significantly. In practice, collections of
simulation results may be used to determine how to choose
aggregation operators this way, leading to the adaptive
aggregation method proposed here.

II. ADAPTIVE AGGREGATION METHOD

In aggregation methods, aggregated grids and their
aggregation/disaggregation operators E and F' may be
determined statically or dynamically. In the static
case, the grids are determined at the beginning of the
computation process and never changed after that, while
in the dynamic case the grids adjust to the dynamics of
the computation. Dynamic gridding makes more sense
when the computation domain that matters most is much
smaller than the whole state space and changes over time.

When solving the CME, dynamic gridding for the
aggregation technique means coarse grids for the states
with low probabilities and fine grids for the states with
high probabilities. One simple way to distinguish these
two groups of states is by Monte Carlo methods such
as SSA. The whole state space is first divided into a
suitable number of bins. Let ¢ty = 0 be the initial time,
t, = ty the final time, and check times %g,t1,t2,...,t,
equally spaced in the time interval [to,tf]. Simulate
the dynamics of the chemical system from ty through
t, several times using Monte Carlo methods like SSA,
and on each time interval [t;,¢;+1] (0 <4 < n — 1) record
all the bins that have been touched by at least one
trajectory between time t; and ¢;1;. Now, all the states
within these recorded bins are categorized as states with
likely high probability masses, whereas all other states are
categorized as states with likely low probability masses.
When integrating the original ODE system from time ¢;
through time ¢;11, choose the aggregation operator E such

that all the states that have been marked as states with
likely high probability masses remain the same after the

mapping, and all other states, namely states with likely
low probability masses, are aggregated into reduced states
according to the aggregation grids.

Here are two numerical examples on the simple birth-
death process with & = 1.2s7!, p = 0.01s~!. Figure 1

shows the numerical result when the reduced model is
constructed using information from 10 SSA simulations,

all started from the same initial state, x1(0) = 10. The
aggregation matrix is then formed based on these 20
trajectories shown in Figure 1 (A). For example, on the
time (seconds) interval [60,80], every state in the closed
interval [50,79] is not aggregated, while all other states
are aggregated according to the grids on the state space.
Hence, the size of the state space after aggregation is
3 x 10 + (15 — 3) = 42, much less than the size of the
original state space, 15 x 10. Figure 2 shows the fact
that increasing the number of SSA runs can improve
the approximation accuracy of the reduced model at the
expense of additional computational cost. For instance,
in this case with 20 SSA simulations every state in the
closed interval [40,99] is not aggregated on the same
time interval [60,80]. Thus, the number of states after
aggregation is now 6 x 10 + (15 — 6) = 69, larger than
the previous case as expected, however, the numerical
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Figure 1. (A) Ten SSA simulations of the simple birth-death
process (of species X7) with ¢y = 200. The grids on the
graph divide the state space into bins and the time space
into subintervals. (B) Computational results from the full
model and the reduced model. The sequence of solid lines
shows the solutions to the reduced model at each time
t; =203, 1 <4 < 10. The dashed line, which is very close
to the solid line at the time ¢q, is the solution to the full
model at the final time ¢y = t1¢.

solutions in Figure 2 (B) are smoother and closer to the
actual solutions than in Figure 1 (B).

The only constraint for the corresponding disaggrega-
tion matrices F' is that the aggregation/disaggregation
matrix pair E and F should satisfy the constraint that
FE =1, where [ is a square identity matrix, like

1 1
k k
1
F =
1
1 1
k k
and
|
1
B =
1
1 ... 1
where the integer k is the bin size. Take
P = (p1,p2,...,p3k) as any complete probability vector.

k 3k
Then PE = (Zi:l DPi, Pk+1,Pk+25 - - -y P2k, Zi:2k;+1 pt) =

P = (p1,po,...,Dr+2) produces the reduced prob-
ability vector P of vector P, and PF =
(£P1- -y D1, D20« - - Phils P42, - - - » £Prt2) maps the
reduced probability vector P back to the complete
probability vector space by dividing p; and pgyo into k
parts.
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Figure 2. (A) Twenty SSA simulations of the simple

birth-death process with t; = 200. (B) Computational

results from the full model and the reduced model. The
sequence of solid lines shows the solutions to the reduced
model at each time ¢; = 20¢, 1 < ¢ < 10. The dashed line,
which almost coincides with the solid line at the time ¢1g,
is the solution to the full model at the final time ¢ty = ¢10.

Assume that the state space is divided evenly into M
bins and the size of each bin is k, that is, N = Mk.
Furthermore, assume the number of bins that has been
reached by all the trajectories on each time interval
is relatively small compared to M. Then the size of
the reduced model is O(k) + O(M), which reaches its
minimum when M and k are approximately balanced,

M = O(k), and so the minimum obtained is O(v/N). This
implies that the size of the state space would be reduced
to its square root at best, and thus unequal size bins are
required for any further reduction.

To generalize the adaptive aggregation method to
higher dimensions, appropriate aggregation grids are
needed. The easiest way to construct such grids is to
use Cartesian products as used in the numerical examples
in Section 3. However, simple Cartesian product grids
may still suffer from the curse of dimensionality, which
often limits the computation to three or two dimensional



problems.  An alternative is to use the sparse grid
approximation [11], which reduces the number of bins
substantially while the error of the approximation is
closely bounded.

III. NUMERICAL RESULTS

3.1. Toggle reaction

One problem with the finite state projection algorithm
is its inefficiency when dealing with bistable distributions.
When the probability distribution is bistable, the best
reduced model should only focus on the two stable states.
However, if all the states between these two stable states
are wiped out completely as could happen with the finite
state projection algorithm, then the innate bistable nature
of the model is lost. In the proposed adaptive aggregation
method, however, this will not happen, since all the states
with small probabilities are not simply thrown away but
aggregated according to the coarse grids so that the
bistable property of the original system is preserved. This
speculation can be verified from numerical experiments on
the well-known bistable toggle switch reaction [14],
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with parameters a = v = 1000min~!, 3 = § = 6000 and
p=10"3min"".

Figure 3 shows how the proposed algorithm works on
this specific problem starting from x(0) = 10, x2(0) =
60, on the time (minutes) interval [to,tf] = [0,10000].
The whole time interval is divided evenly into twenty
subintervals by grid points ¢; = 500;, 0 < ¢ < 20.
Figure 3 shows the computation result (contour plots

of the aggregated probability vector P(Y,t)) together
with the projected high probability domain, i.e., the
part of the state space categorized as states with
likely high probability so that no grid aggregation is
applied. Altogether, the three graphs demonstrate how
the aggregation algorithm is applied adaptively and
efficiently for the toggle switch model.

Figure 4 compares the estimated marginal probability
distributions of species X; and X5 from three different
methods. The full model CME can be considered as an
exact description, while the accuracy of the SSA algorithm
and the reduced model CME are both proportional to
the cost. The comparison of numerical results are based
on comparably accurate SSA and reduced model CME
as drawn in Figure 4. The CPU runtime for 10°
SSA simulations is 2688.3s (using the SSA algorithm
implemented in Stochkit [15]), and the runtimes for the
full model and reduced model CME are 73.3s and 39.7s
respectively (the ODE systems are solved by the Krylov
space projection method [16], implemented in SPARSKIT
[17]). The runtime reduction for the reduced model is not
as great as might have been expected since the size of the
reduced model is around one fourth that of the full model
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Figure 3. The evolution of the projected high probability

domain and the numerical solution P(Y,t) when using the

adaptive aggregation method on the toggle switch problem.

and the proposed algorithm also introduces overhead
computing the matrices £ and F and matrix vector
multiplications using F and F. However, the reduction in
computational effort (with a Cartesian product grid) will
become significant if the problem size is large enough as
shown in the next example.

3.2. A simple cell cycle model

This section focuses on a simple cell cycle model
derived from some normalized phenomenological rate
equations [18]. The model can be described by
the following elementary reactions without interme-
diates and with variable propensity rates and pa-

rameters ki/coyen = 0.01 min~!, &, = 0.04min"",
" o—1 " o—1
klccann = 1.0min™", k{ccdea0/ccant = 10.0min™ ",

R .1
kscoyer/ccant = 35min™ ", kf/ccac0 = 0.005min™ ",
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Figure 4. Numerical estimations for marginal probability
distributions using the full model (dashed lines), the reduced

model (solid lines), histograms from 10° SSA simulation
runs (dotted lines).

k! Jcodean = 0.2min" 1, kg = 0.1min"", J3/ccan1 = 0.04,
J4/Cth1 = 0.04, JS/CCycB =0.3:

klm‘/s
(Z) ~ TCycB
ks
ky [ Vs
TcyeB + Todnl — TCdhl
kg
JaVstazcdni
ToyeB + TOdhl — ToyeB + Todh1p
k! ’
J3Vstzodhip
TCOde20 T TCdh1P — TCde20 T Todhl
2
’ " ICycB
ksvs"rks Vs (‘]5‘/5)2+220ycB
0 = TCde20
ke

where cg is the characteristic concentration of the species
S. The cell mass variable m is introduced to reflect the
assumption that the species CycB is synthesized at a
supralinear rate such that its molecular number increases
with cell mess and Vi, the nominal volume of the cell times
Avogadro’s number, is chosen to be 18 molecules/nMolar.
The species CdhlP is the phosphorylated form of Cdhl
so that Tcan1 + Tcanip = ccan1Vs.

Numerical experiments are conducted here under three
different settings of characteristic concentrations, ccycp =

Ccdhl = Ccde20 = 9.0nM, ccyeB = Ccanl = CCde20 =

10.0nM, coyer = ccdn1 = ccde20 = 20.0nM, and the final
time (minutes) is ¢t = 70.0. Commonly, the larger the
characteristic concentration, the larger is the size of the
state space, the bin size in Cartesian product gridding,
and the number of SSA runs to construct an accurate
reduced model. Accordingly, the bin sizes for all three
cases are 6 X 13 x 8, 8 x 14 x 12, and 10 x 19 x 15, and
the numbers of SSA runs are 20, 50, and 100. Figure 5
compares the numerical results from different numerical
schemes under the first setting and Table 1 compares the
CPU times (in seconds) under all three settings.

Since the problem size is relatively large, two types
of ODE system integrators for the CME are tested
here [19]. The first one is the Krylov space method,
which only requires procedures to compute matrix vector
products and no storage of the whole matrix. The
second one is a numerically stable ODE solver (the
backward Euler method), considering the prevalence of
stiff problems in chemical kinetics. Numerical results
show that when the problem size is moderate, stable ODE
solvers usually require less CPU time than the Krylov
space methods. However, most stable ODE solvers also
need efficient sparse matrix linear system solvers, which
often demand extra computer memory depending on the
implementation.

TABLE 1. CPU time (in seconds) for different methods.

cs 5.0 10.0 20.0

SSA* 179.3 | 3.5 x 103 | 7.3 x 10*
CME(full) 1646.0 | 6.0 x 10* | 7.1 x 10°
CME((reduced) 3425 | 4.3 x10% | 2.7 x 10*
CME(reduced)®* | 194.9 | 2.5 x 103 | 2.8 x 104

* 10% SSA runs when characteristic concentrations cg are all
5.0nM, 10° runs for 10.0nM, and 108 runs for 20.0nM.

** The CME is solved by the backward Euler method with a
fixed step size of 0.07 instead of the Krylov space projection
method, and the matrix linear systems are solved by the
software package UMFPACK (the unsymmetric multifrontal
method for sparse LU factorization) in SuiteSparse ([20], [21]).

Table 1 shows that the CPU times of the algorithm
proposed are comparable to the Monte Carlo method SSA
and much less than solving the CME on the full state
space. Actually, the reduction in computational effort
becomes more substantial as the problem size grows.

IV. CONCLUSION

One major challenge when using the chemical master
equation to model gene regulatory networks and some
other biological systems is that it often requires integrating
some very large ODE systems to get solutions to the CME.
This paper proposes a possible way of using information
from approaches like Monte Carlo methods to diminish
the size of the ODE systems imposed by the CME, as
shown in the numerical examples. One potential problem
with the proposed algorithm is the difficulty estimating
the model reduction error. Empirically, this error depends
on the number of simulation runs used to construct
the reduced model, as shown in the simple birth-death
example.
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Figure 5. Numerical estimations for marginal probability
distributions at time (minutes) ¢y = 70.0, coyep = 5.0nM,
codghl = 5.0nM, cogeog = 5.0nM, the full CME model
(solid lines), the Cartesian grid reduced CME model
(dashed lines), and the histogram from 104 SSA simulations
(dotted lines).

The proposed algorithm works best when the statistical
variance of the system is relatively small and not so
well if the variance is high, which often occurs when the
chemical system is bistable. However, for most of the
numerical examples presented here, where the variance
of the system is relatively high, the performance of the
proposed algorithm is satisfactory.

Information collected from Monte Carlo methods is
used in a quite simple way in the proposed algorithm.

A more complicated and effective way may be to first

construct a surrogate model [22] out of data from Monte
Carlo methods and reduce the size of the ODE system
based on the surrogate model, instead of using data from
Monte Carlo simulations directly. In other words, the
grids are generated with different mesh sizes according to
the estimated probability mass function using its value
and its spatial derivatives.
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