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Abstract— The analysis of cellular behavior and functionality
is the most challenging aim of systems biology. The extensive
analysis of the interactions between different classes of intra-
cellular molecules reacting to genetic/environment changes can
elucidate the mechanisms of regulation involved on different
cellular processes. We propose a novel framework that enables
the integrated analysis of metabolic and regulatory networks.
The framework takes advantage on publicly available data
repositories, sustaining the inference of knowledge from the
integrated network. Since it is based on logic programming, it
provides users with a powerful language to query information
using both first and second order predicates. Also, it supports
network topology analysis, motif finding and robustness evalu-
ation. In this work, as an illustrative case study, our framework
is used to build a model of the bacterium Escherichia coli K12.

Keywords: Metabolic and Regulatory Networks, Data Inte-
gration, Systems Biology, Logic Programming.

I. INTRODUCTION

The study of biological networks has revealed to be very
valuable in the understanding of cellular behavior, typically
due to a large number of interacting components following a
set of biological rules, which define their function on differ-
ent processes, including biochemical reactions and genetic
regulation [1].

In recent years, increasing attention has been paid to a
systems-level understanding of the structure and functionality
of both the metabolic and gene regulatory networks. The rep-
resentation of metabolic networks by genome-scale models
has been successfully used to describe all metabolic reactions
taking place in the cell and predict metabolic performance for
fully sequenced organisms [2][3]. Similarly, gene regulatory
networks have been used to characterize the components of
the regulatory system as well as their assembly [4][5].

The need for integrated metabolic and regulatory net-
works arises from the complex nature of biological sys-
tems [6][7][8]. The inclusion of regulatory information on
metabolic models allows an insightful analysis of the be-
havior of the metabolic network and may help to identify
evolving network properties that are not clear when focusing
solely on the reaction level [9][10].

However, the construction of such models implies multi-
source data integration. Data quality issues within a single
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source (e.g. null values, misspellings or multi-value fields)
and multi-source inconsistencies (e.g. dubious EC num-
ber/enzyme name association, poor use of standard iden-
tification or common name versus multiple name aliases)
demand for non-trivial computational aid in terms of data
merging. On the other hand, the integrated analysis of
biological components also requires enhanced computational
tools capable of scaling up with the diversity and quantity of
network components and all kinds of existing interactions.

In this work, we present a novel computational framework
that aims to address the integrated representation and analysis
of metabolic and regulatory networks. The metabolic and
regulatory levels are fully described, in terms of components
as well as interactions. Data integration from primary data
sources results on a knowledge base encompassing pathways,
metabolites (reactants/products and inhibitors/activators) and
enzymes at the metabolic level, as well as genes, promoters,
transcription factors, metabolic transcriptional regulators and
sigma factors at the genetic level. Since the framework
is based on logic programming, it provides users with a
powerful language to query information using both first and
second order predicates. Also, it supports network topology
analysis and motif finding.

Currently, the framework is focused on prokaryotic mod-
els. Notwithstanding, it is possible to extend its knowledge
base and adapt its query and analysis predicates to encompass
eukaryotic models as well. Here, the construction of the
integrated network for Escherichia coli K12 is used to
exemplify the overall process.
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Fig. 1. Conceptual view of the biochemical network. Each square node
represents a biochemical reaction transforming input metabolites (reactants)
into output metabolites (products). Additionally, metabolic regulation is
illustrated by metabolites acting as metabolic inhibitors (double crossed
edge) and activators (double arrow edge).
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Conceptual view of two particular cases of biochemical reaction catalysis. In (a) the exemplified biochemical reaction is catalyzed by an enzyme

complex made by two gene products, while in (b) the catalysis of the same reaction by two different gene products (isoenzymes) is represented.

II. GENOME-SCALE MODEL
A. Metabolic Level

Cellular metabolism comprises a vast set of enzymatic pro-
cesses that convert various metabolites, generating biomass
and energy needed to sustain cellular functions [11]. In fact,
enzymes, which carry out chemical reactions or transport
processes, are fundamental components in metabolic net-
works.

As illustrated in Figure 1, metabolic networks embrace two
different classes of nodes, reactions and metabolites, and the
interactions represent the participation of metabolites either
as reactants/products or inhibitors/activators in metabolic
reactions. The first basically represents the consumption of
substrates and the production of metabolites in a enzymatic
reaction. The second corresponds to the control of the
enzymatic reaction, by several metabolites that can bind
to enzymes activating or inhibiting the catalytic activity.
This type of metabolic control is essential to adjust the
excess or insufficiency of some products or reactants in the
intracellular environment.

Reactions will demand for non-trivial node representation
in order to encompass different enzymatic participants (Fig-
ure 2). A reaction may be simplistically viewed as being
catalyzed by enzymes that consist on a single polypeptide
unit (genetic product) or a complex obtained from multiple
polypeptide subunits (case (a) in Figure 2). Nevertheless,
there is also the case when two or more enzymes are able
to catalyze the same reaction (case (b) in Figure 2). These
enzymes are called isoenzymes and they differ in the amino
acid sequence since they are transcribed from different genes.
As a consequence of their different amino acid sequences
isoenzymes may have different physicochemical properties
and their transcription from different genes may lead to
different regulation.

B. Genetic Level

While at the metabolic level all the possible resources to
convert metabolites are represented, it is understandable that

not all enzymes are available in the cell at the same time.
For example, cells do not synthesize enzymes needed for L-
arabinose consumption unless this compound is present in
the cultivation medium. Thus, besides the metabolic control
through inhibitors/activators, metabolism is also controlled
by the availability of certain gene products.

Cells usually control the expression of enzyme-coding
genes by regulating the transcription initiation through reg-
ulatory proteins, including sigma factors (o factors) and
transcription factors (TFs) (Figure 3). Sigma factors are
essential transcription initiating factors that allow specific
binding of RNA polymerase to gene promoters. Transcrip-
tion factors bind to target sequences on the so-called cis-
regulatory regions of genes, stimulating or repressing the
RNA polymerase activity. TFs encoding genes can also be
regulated by other transcription factors and most importantly
by input signals, such as sensor proteins responding to en-
vironmental changes and metabolites, which bind directly to
TFs. These TF binding metabolites are identified in this work
as “transcriptional effectors”, i.e., metabolic transcriptional
regulators and those metabolites can also be involved in
metabolic reactions as reactants/products.

C. Integrated Network

In the graph representation of the integrated network,
biochemical reactions are built up as nodes mediating the
connection between reactants and products of the enzymatic
reaction. The metabolic edges are directed and categorized
as reversible or irreversible depending on the reversibili-
ty/irreversibility of the corresponding reaction. Other edges
represent the enzymatic regulatory events (activation/inhi-
bition) connecting metabolites to enzymatic reactions. The
integration relies on the connection of reaction nodes to gene
products with non-directed edges, representing the catalysis
of the reaction by either enzymes, enzymatic complexes
or isoenzymes. The decision of which gene products are
expressed or not, is set by the action of sigma factors
and transcription factors activating or repressing the tran-
scription. The control of metabolism involves regulation
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Fig. 3. Conceptual view of the gene regulatory network. Metabolic genes
are regulated by transcription factors and sigma factors through promoters.
Transcription factors and sigma factors are associated to the corresponding
encoding genes. Whenever there is more than one promoter, regulation is
determined by the presence of particular sigma factors. The case where a
transcription factor regulates another transcription factor is not represented
here.

of individual reactions at various levels, from enzymatic
activation/inhibition by small molecules, to transcriptional
regulation of enzyme-coding genes at the genetic level.
Therefore, at the metabolic genes, Boolean rules represent
gene regulation (i.e. encompassing transcription factor, sigma
factor and transcriptional effector regulations) and enzymatic
activity (i.e. encoding genes for polypeptides, complexes and
isoenzymes). For the example illustrated in Figure 3, the
Boolean rule is (p; OR ps), ie., ( (c; AND TF; AND
NOT TF5) OR (02 AND TF3) ), when detailing genetic
regulation.

III. CONCILIATING DATA ON E. coli

The manually-curated stoichiometric model developed
by [12] and the publicly available repositories EcoCyc',
BRENDA? and RegulonDB? supported the reconstruction of
the metabolic and genetic networks of E. coli.

The stoichiometric model is the core of the metabolic
model, supplying the following data: identification of the
biochemical reactions, determination of the reaction stoi-
chiometry and definition of metabolites compartmentaliza-
tion and reaction localization. The description of biochemical
reactions includes the chemical equation, the common name
of the enzyme(s), the corresponding EC number(s) and the
genetic Boolean rule associated with the enzyme-coding
genes. The stoichiometric data and cellular localization (e.g.
periplasm, citoplasm or extracellular) is extracted from the
chemical equations and further information on activating and
inhibiting compounds is retrieved from BRENDA.

RegulonDB provided information on genetic regulation,
namely: transcription factor coding genes (regulatory genes)
and regulation (regulated genes), and sigma factor coding
genes and regulation. Information on promoters was retrieved

'ttp://www.biocyc.org/
’http://www.brenda-enzymes.info/
3http://regulondb.ccg.unam.mx/

from EcoCyc based on the genetic Boolean rules whereas
transcriptional effectors were manually collected from lit-
erature. Gene and promoter data are linked through tran-
scription unit data. Additional manual curation was required
when multiple regulatory interactions (RI functions) were
assigned for a given transcription factor/gene regulation and
for associating sigma factors with multiple promoter regions.
The integration process undertook some challenging issues
both at the biochemical and genetic levels. The data from the
stoichiometric model and BRENDA were merged through
EC numbers and enzyme common names. The EC number
is a standard identification and was therefore preferred over
the enzyme’s name. Unfortunately, this identification is not
known for almost half of the reactions, leading to shallow
reaction search attempts based on common names. The genes
involved on the catalysis of a reaction are delivered by
the stoichiometric model in the form of a genetic Boolean
rule. Thus, it is fairly simple to identify different enzymatic
participation (e.g. polypeptids, complexes or isoenzymes).
However, for the same EC number, there might be different
Boolean rules associated, because EC number is related to
the enzymatic activity rather than the particular structure of
an enzyme. As such, the relationship between EC number or
common enzyme name and Boolean rule is not bidirectional.
Currently, the metabolic and genetic components of the
network consist of:
e 2077 enzymatic reactions for 30 pathways, involving
1276 different metabolites;
« 1037 metabolites participating as reactants or products
and 435 acting as enzymatic inhibitors or activators;
e 1243 direct transcriptional interactions between tran-
scription factors and the genes they regulate;
e 914 regulated genes from a total of 1805 cataloged
genes;
e 158 transcription factors and 165 regulatory genes;
e 1350 gene-sigma factor associations for 7 sigma factors;
o 09 transcriptional effectors.

IV. LoGICc-BASED FRAMEWORK

The main goal of this work is to provide a framework
to allow scientists to easily represent their data. This body
of knowledge entails information about reactions, pathways,
metabolites, genes, enzymes, transcription factors, sigma
factors, transcriptional effectors and so forth. The framework
enables scientists to easily query the system to find rela-
tionships in the data. Prolog was chosen since it is a logic
language that provides many advantages for such a task:

o It is well suited to represent relationships between data
and to easily query the database (e.g., to find all the
genes that are activated by a given transcription factor);

« It allows users to write queries in a declarative fashion,
i.e., users may query the system by simply describing
the relationships they are trying to find;

o It is a high-level language: users may easily write their
queries in a way that is very easy to understand;

o It is a very powerful language: a few lines of code are
enough to find complex relationships and can be written



in a matter of minutes.

The database is divided in three conceptual layers. One is
concerned with the metabolite level, describing pathways and
their reactions, products, reactants and metabolic inhibitors
and activators; the intermediate level is the integration layer
that has information about the enzymes (and their coding
genes) which catalyze metabolic reactions and about the
interaction between metabolites and the transcription factors
(denoted transcriptional inducers in this database); finally,
the genetic layer collects all the information about regulatory
genes, transcription factors, promoters, regulated genes and
sigma factors.

The next sections will explain each of these layers in
detail, listing the used predicates and explaining their usage.

A. Metabolic Layer

o in_pathway(ReactionName, Pathway) - Identifies the
pathway to which the reaction belongs.

o consumes(MetaboliteDescription, ReactionDescription)
- Describes that a given metabolite is consumed by a
reaction. MetaboliteDescription is a fact of the form
met(Metabolite, CellRegion) with the name of the
metabolite and the cellular localization (c, p, or e for cy-
toplasm, periplasm or extracellular). ReactionDescrip-
tion is either the name of a reaction or a fact of the form
reversible(ReactionName, Direction) where direction is
either left or right. If the reaction is reversible, there
will be two facts, one for each direction.

o produces(MetaboliteDescription, ReactionDescription)
- Describes that a given metabolite is consumed by a
reaction. The arguments are similar to consumes.

o inhibits(Metabolite, ReactionName) - Describes that a
given metabolite inhibits a reaction, given the name of
the metabolite and the name of the reaction.

e activates(Metabolite, ReactionName) - Describes that a
given metabolite activates a reaction.

To illustrate the use of these predicates, we present a small
excerpt of the information compiled. In the case of reaction
ACKr, metabolites acetate and atp are consumed and
acetyl phosphate and adp are produced (in the left
direction) or acetyl phosphate and adp are consumed
and acetate and atp are produced (in the right direction).
Reaction ACKr is inhibited by eight metabolites.

in_pathway (’ACKr’,’ pyruvate metabolism ’).

inhibits (’acetyl phosphate’, ACKr’).
inhibits (" li+’,”ACKr’).
inhibits (’ mercuric chloride ’,”ACKr’).
inhibits (’n—ethylmaleimide *,”ACKr’).

inhibits (*na+’,”ACKr’).
inhibits (’p—chloromercuribenzoate >, ACKr’).
inhibits (’p—mercuribenzoate ’,”ACKr’).
inhibits (’ propionate ’, ACKr’).
consumes (met(’ acetate ’,c),

reversible (’ACKr’,’ left >)).
consumes (met(’atp ’,c),

reversible ("ACKr’,’ left *)).
consumes (met(’acetyl phosphate’,c),

reversible ("ACKr’, right )).
consumes (met(’adp’,c),

reversible ("ACKr’, right 7)).
produces (met(’ acetyl phosphate’,c),

reversible ("ACKr’,’ left ”)).
produces (met(’adp’,c),

reversible (ACKr’,’ left *)).
produces (met(’ acetate ’,c),

reversible ("ACKr’, right ”)).
produces (met(’atp’,c),

reversible ("ACKr’, right 7)).

B. Integration Layer

o reaction_has_enzymes(ReactionName, Enzyme) - Identi-
fies the enzymes that catalyze a given reaction. The en-
zyme is a tuple of the form enzyme(Name, BooleanRule)
with the identifier of the enzyme and the Boolean rule
giving the set of genes involved in the enzyme’s coding.
If a reaction has more than one reaction_has_enzymes
fact we are describing isoenzymes and the Boolean rule
is obtained by the disjunction of the Boolean rules for
each isoenzyme.

o transcriptional_effector(TranscriptionFactor, Boolean-
Rule) - Associates a Boolean rule to a given tran-
scription factor expressing which metabolites affect its
functioning.

The integration layer can be demonstrated by the following
example:

reaction_has_enzymes (’ACKr’,

enzyme (' acetate kinase ’,b3115)).
reaction_has_enzymes ( ACKr’,

enzyme(’ acetate kinase ’,b2296)).
reaction_has_enzymes ( ACKr’,

enzyme (' acetate kinase ’,b1849)).
reaction_has_enzymes ("ACLS’ ,enzyme (

acetolactate synthase ’,(b0077 and b0078))).
reaction_has_enzymes (’ACLS’ ,enzyme (

acetolactate synthase ’,(b3670 and b3671))).
transcriptional_effector (’AlaS’,’ l—alanine *).
transcriptional_effector (”AllIR’,’ glyoxylate *).
transcriptional_effector (CdaR,

glyc—r or galct—d or manglyc or glcr)
transcriptional_effector ("FNR’ ,not '027).

The ACKTr reaction is catalyzed by isoenzymes acetate
kinase encoded by b3115, b2296 and b1849. Other reactions
are catalyzed by enzymes which are encoded by more than
one gene, producing a complex protein. As exemplified, the
ACLS reaction is catalyzed by two isoenzymes identified as
acetolactate synthases. The subunits of the first isoenzyme
are encoded by genes b0077 and b0078 and of the second
one are encoded by genes b3670 and b3671. The integration
layer includes also the influence of metabolites at the genetic
regulation. In some cases, transcription factors’ activity is
affected through metabolite binding changing the expression

of target genes.

C. Genetic Regulation

o transcription _factor(RegulatoryGene, TranscriptionFac-
tor) - Identifies the gene that encodes a given transcrip-
tion factor.

o genetic_regulation(TranscriptionFactor, Promoter, RI-
Function) - 1dentifies the genetic regulation, the action
of a given TF and its effect (usually inhibition (-) or
activation (+)) over a given promoter.

o promoter(Promoter, RegulatedGene) - Identifies the re-
lationship between the promoter and the regulated gene.

o sigma_factor(CodingGene, Sigma) - Identifies the sigma
factor’s name and its coding gene.



o sigma_regulation(Promoter, Sigma) - Associates a sigma
factor with a given promoter assuming that it has always
a positive role.

In the previous example, the ArcA transcription factor
encoded by gene b4401, activates the ackAp promoter and
inhibits the aceEp promoter. Sigma factor 28, encoded by
fliA, also affects transcription of several genes, like genes
under the control of aerp and flgKp.
transcription_factor (b4401, ’ArcA’).

genetic_regulation (’ArcA’, aceEp, —).
genetic_regulation (’ArcA’, ackAp, +).

promoter (aceEp, b0114).
promoter (aceEp, b0115).
promoter (ackAp, b2296).

*Sigma28 7).
*Sigma28 ).
’Sigma28 ).

sigma_factor (fliA ,
sigma_regulation (aerp ,
sigma_regulation (flgKp,

Based on this knowledge, the framework is able to au-
tomatically generate the regulatory Boolean rules for all
metabolic genes.

V. QUERY EXAMPLES

A. Querying the Database

To obtain information about the facts in the database,
one simply has to write the fact using variables (denoted in
Prolog by a capitalized name) at the prompt. Thus, supposing
one wants to find the metabolites that are produced by
reaction ACLS, one simply has to write the following query:

?7— produces (M, "ACLS’).
M = met(’(s)—2—acetolactate ’, c)

Note that you only get the first answer. However, Prolog
expects input from the user at the end and, if the user wants
other answers, he/she simply needs to input a semicolon to
ask for an alternative answer. In this way, we can find all the
metabolites that are produced by this reaction.

?7— produces (M, "ACLS’).

M = met(’(s)—2—acetolactate ’, c) ;
M = met(co2, c) ; fail.

B. Second Order Predicates

If we are interested in finding all the metabolites that are
produced by a given reaction, we could ask Prolog to give
us all solutions at the same time by using one of the second
order predicates. A second order predicate collects all the
results to a given predicate in a list. We could thus ask the
system for all the metabolites produced in the cytoplasm by
reaction ACLS:

?7— setof (M, produces(met(M, c),

ACLS’), Metabolites ).

Metabolites = [’(s)—2—acetolactate °, co2].

The setof predicate has some interesting characteristics:
if there are unbound variables in the predicates that are not
collected in the first argument, setof will instantiate (i.e.,
assign a value) them with one of the possible values and
only give the alternatives in this case. To find alternatives
for other values of the variables, we have to ask Prolog to
give us the alternatives explicitly.

setof (M, produces(met(M, CellRegion),

*AGt3’), Metabolites).
CellRegion = ¢, Metabolites = ["h+’] ;
CellRegion = e, Metabolites = [silver].

In case we wanted to find all the metabolites produced
independently of where they were produced, we would
existentially quantify the variable CellRegion.

7— setof (M,
| CellRegion"produces (met(M, CellRegion),

*AGt3’), Metabolites).
Metabolites = [ag, "h+’].

C. Conjunction and Disjunction

We are usually interested in combining information about
different entities. For instance, we could try to find the
names of the reactions that produce a metabolite and are
inhibited by the same metabolite. The conjunction in Prolog
is written by simply separating the predicates by a comma.
A semicolon is used if we are interested in the disjunction:

inhibits (M, R).
"PANTS’

?7— produces (met(M,
M =

¢), R),
’(r)—pantothenate °, R =

If we are interested in finding all the reactions that produce
and are inhibited by a certain metabolite, we would use a
second order predicate:

7— setof (R, M"(produces(met(M, c), R),
inhibits (M, R)), Rs).
Rs = ['ABUID’, 'ACGAMK , 'ACGS’|...].

Suppose we want to find the names of the reactions that
either produce or consume a certain metabolite:
?7— setof (R, CellRegion "(
| consumes (met(Met, CellRegion), R);
| produces (met(Met, CellRegion), R)),
| Reactions ), length(Reactions, N).
Met = ’12dgr120°’,
Reactions = [’12DGR120tipp’, 'DAGKI20’,
"PAPA120°, 'PAPAI20pp’], N = 4

As exemplified, metabolite *12dgr120’ participates in four
reactions as reactant or product.

D. Rules

It makes sense to write rules that will spare us having to
write very complex queries or simply saving them for later
use. Let us suppose that we are interested in finding pairs
of reactions where one reaction produces a given metabolite
and the other consumes it. Let us write a rule, called edge
with three arguments to denote this relation:
edge (R1, R2, Met):—

produces (met(Met,
consumes ( met (Met,

CellRegion), R1),
CellRegion), R2).

Now we can use this predicate in a query:

7— edge(R1, R2, M).
R1 = *12DGRI120tipp’, R2 = ’DAGKI20’,
M = ’12dgrl120°

We can identify that metabolite *12dgr120’ is produced
in reaction ’12DGRI120tipp’ and consumed in reaction
"DAGK120’.



E. More Examples

Suppose we want to find the names of the genes that
are regulated by a given TF (e.g. *AcrR’). The following
query finds all promoters P that are inhibited by AcrR, the
bnumber of the genes that are regulated by these promoters
and finally, the common name associated to the bnumber.
As demonstrated in the following example, the transcription
factor AcrR inhibits genes acrA and acrR.

?7— setof (Name, P "G"(
genetic_regulation(’AcrR’, P,
promoter (P, G),

gene_alias (G, Name)

), L).
= [acrA, acrR]

=),

\
\
\
\
L

A more complex example would be to find metabolites
acting both as an enzymatic activactor/inhibitor and also as
a transcriptional effector, which affects the genetic regulation
of a protein coding gene associated with the same reaction.
As represented below, metabolite ’galct-d’ is simultaneously
an enzymatic inhibitor of glucarate dehydratase that catalyzes
the GLCRD reaction, and a transcriptional effector that affect
transcriptional activity of CadR, which activates the enzyme
coding genes of the same reaction (GLCRD).

29— inhibits (M, R),
| reaction_has_enzymes (R,

enzyme (Name, Index, GeneRule)),
| get_genes (GeneRule, Genes),
| member (Gene, Genes),
| promoter (P, Gene),
| genetic_regulation (TF, P, RI),
| transcriptional_effector (TF, MRule),
| get_mets (MRule, Mets),
| member (M, Mets).

M = ’galct—d’, R = 'GLCRD’,

Name = ’glucarate dehydratase ’,

Index = 0, GeneRule = b2787, Genes = [b2787],
Gene = b2787, P = gudPp, TF = CdaR’, RI = +,
MRule = ’glyc—r’or’galct—d’ or manglyc or glcr,
Mets = [’ glyc—r’, ’galct—d’, manglyc, glcr]

This query retrieves one of the metabolites that inhibit a
reaction and then selects one of the Boolean rules (GeneRule)
of one of the enzymes of the reaction; then it takes one of
the Genes, the promoter that regulates the gene, the TF that
regulates the promoter and the transcriptional effector rule
for this promoter. Finally, it verifies that the metabolite is

part of the metabolite rule.

VI. CONCLUSIONS

The construction of integrated metabolic and regulatory
networks is of paramount importance to understand the
overall structure and behavior of biological systems. In recent
years, increasing attention has been paid to a systems-level
understanding of the structure and functionality of both
the metabolic and gene regulatory networks in the field
of systems biology. However, the construction and analysis
of integrated metabolic and regulatory networks demands
for non-trivial network representation and computation al-
gorithms. Both information querying and network analysis
have to account for the number and diversity of network
components and the multiple kinds of existing interactions.

Our logic-based framework aims at tackling integrated
networks, providing adequate support for data extraction and

merging, knowledge base query, network topology analysis,
motif finding and robustness evaluation. The framework
allows us to easily write queries that combine information
from different levels (e.g. the genetic and metabolic level)
in a high-level language that is easily understood by humans
and that provides a much needed abstraction when searching
for information.

We are currently using the framework for motif finding
and generation of boolean rules that encompass available
information about cellular functionality. This will entail
the information necessary to perform automatic robustness
evaluation.
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