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Abstract— Phagocyte transmigration is the initiation of a
series of phagocyte responses that are believed important in the
formation of fibrotic capsules surrounding implanted medical
devices. Understanding the molecular mechanisms governing
phagocyte transmigration is highly desired in order to improve
the stability and functionality of the implanted devices. A
hybrid computational model that combines control theory and
kinetics Monte Carlo (KMC) algorithm is proposed to simulate
and predict phagocytes responses at molecular level. In order
to mimic various biological knockout experiments, a general
external control scenario is designed. The stochastic nature
inherent to phagocyte transmigration is captured by KMC.
A new formula is derived to calculate the transition rates as
inputs to KMC. This formulation might quantify biological
interactions in a general manner which is beyond the scope
of the traditional chemical reaction kinetics.

I. INTRODUCTION

In the practice of medicine, the use of a number of
implanted medical devices, such as breast implants, eye
implants, drug delivery systems and biosensors, is becom-
ing increasingly important. However, these devices often
induce a wide variety of unwanted responses, including
inflammation, thrombosis, infection, and fibrosis. As a result,
fibrotic capsules may form and surround the implanted
medical devices. It has a direct impact on the stability and
compatibility of the implanted medical devices, and it may
leads to implant failure[1], [2], [3]. In many cases, the fibrotic
tissue formation is associated with the rapid accumulation of
large numbers of phagocytic cells[4], [5]. It begins with the
recruitment of phagocytes from capillary to implants sites,
which is referred as phagocyte transmigration. Having an
insight into the molecular mechanisms governing phagocyte
transmigration is the jumping-off point in the studying of
how phagocyte responses may alter the extent of fibrotic
tissue formation so that we can learn from it to improve
the stability and functionality of the implanted devices.

It is well accepted that phagocyte transmigration is a multi-
step cascade process, involving initial margination in the
vessels, rolling and firm adhesion of phagocytes to the vessel
wall, and extravasation. Phagocyte rolling on the vessel
wall is mediated by members of the selectin family via
continuous formation and rupturing of receptor-ligand bonds
between phagocytes and endothelial cells (ECs). Rolling
rapidly leads to trans-membrane signaling and the formation
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of a second set of shear resistant adhesion bonds, enabling
phagocyte cells to become arrested prior to migration into
the extravascular space.

Over years, mechanical and thermodynamic models have
been developed to study how physical parameters influence
the behavior of phagocyte or leukocyte rolling and adhesion.
One well-known model used to describe the kinetics of single
bio-molecular bond failure was established 20 years ago[6].
At the same time, biomedical engineers have developed and
applied a variety of optical and electronic technologies (i.e.,
intravital and conventional light microscopy, flowcytome-
try, rotational and translational viscometry, and molecular
force and optical spectroscopy) so that real-time imaging
of phagocyte rolling and arrest can be obtained, and an
inner view of the intercellular adhesive contact region can
been achieved. Along with the progress of experimental
methods that enable quantification of the relevant kinetic
and mechanical parameters, studies[7], [8], [9], [10], [11]
have been done in adhesive dynamics simulations. These
models focus on studying the dynamical characteristics of
receptor-ligand bonds under various physical parameters,
such as rolling velocity and shear rate. It is difficult for
these models to answer the questions like what is the
response of phagocytes transmigration if the concentrations
of selectins decrease. Therefore, models that can explain a
variety of interactions at the level of individual molecular
pairs are highly demanded. More importantly, the multi-
step process of phagocytes transmigration should be taken
into account as a whole. But aforementioned models fail
to do it. The multi-step process of phagocytes transmigra-
tion can be viewed as a biological system that comprises
a number of elements to form a complex network. How
each individual bio-molecular behaves over time? What is
system traffic pattern? How can we control this traffic? These
questions are most wanted to be known by us. To gain a
system-level understanding of a biological process, system
and control theory has been re-adopted in system biology.
The first application of system theory and control theory
to study cellular responses to implanted devices[12] was
published in 1979. Besides this model, a variety of related
modeling works have been done in the areas of inflammatory
reactions[13], [14], thrombosis[15], coagulation[16], and fi-
broblast proliferation[17]. Despite these interesting models,
most of them were based on in vitro results and none of these
models can be directly used to simulate phagocyte responses
to implanted devices in vivo.

Another important issue about phagocytes transmigration
process is its stochastic nature. For example, phagocyte
rolling shows a stop-and-go type of jerky motion along with



highly fluctuating rolling velocity[18]. The randomness ap-
pears because of the small number of receptor-ligand bonds.
Even small change in the number of bonds, it might alter
rolling behavior dramatically. Besides the small-scale rolling,
the lack of quantitative information on heterogeneous cell
properties, such as receptor number and class, contributes
to the randomness appeared in phagocytes transmigration.
This randomness is not due to measurement error but a
manifestation of the stochastic nature inherent to the physics
and chemistry of receptor-ligand binding. This situation calls
for a probabilistic model other than a deterministic model in
the study of phagocytes transmigration.

In system biology, a basic probabilistic description of
dynamic system is master equation. A master equation is a
probabilistic differential equation that describes a system de-
fined by discrete configurations. Master equations are useful
in describing systems at small length scales when continuum
assumptions break down, particularly when fluctuations are
important. For example, a chemical system of N reacting
species can be described by a master equation that is a
differential-difference equation in N dimensions governing
the dynamics of the probability distribution for the system.
One common drawback of master equations is that they
suffer from the well-known “curse of dimensionality”. Each
species adds one dimension to the problem leading in many
cases to a prohibitive computational complexity. Instead
of numerically integrating the master equation, stochas-
tic realizations are usually obtained through Monte Carlo
simulation. The most referred method is Gillespie’s SSA
method[19] and variations of it. The Monte Carlo approaches
have been shown to be mathematically equivalent to the
master equations[20]. Almost all of these methods describe
biological interactions using chemical reaction kinetics. This
might narrow the scope of the interactions appeared in a
biological system.

Rule based methods are also popular in simulating stochas-
tic dynamic systems. Recent work of[21] applied a multi-
level, agent based, in silico model to represent the dynamics
of rolling, activation, and adhesion of individual leukocytes
in vitro. It provides the links between sub-cellular molecular
level events and the variety of systemic phenotypic attributes.
However, agent based methods (ABMs) looks at a system
not at the aggregate level but at the level of its constituent
units. The interpretation of interactions between each of the
components in the system might not be explicit. And the
high computational requirements of ABMs remain a problem
when it comes to modeling large systems. In this paper, we
set up the following objectives. (1) Understand links from
molecular level events to system phenotype. (2) Provide a
general external control scenario to mimic various biological
knockout experiments, and even to provide possible sugges-
tions in future experimental design. (3) Capture the stochas-
tic nature appeared in the system. (4) Quantify biological
interactions in a general manner which might be beyond the
scope of chemical reaction kinetics. To achieve these goals,
we divide the whole biological system into two sub-systems.
The first sub-system comprises all the molecular species that

are involved in phagocytes transmigration, except phagocyte
cells. The second sub-system includes phagocyte cells and all
the molecular species that directly effect phagocytes rolling,
adhesion and migration. A control theory based deterministic
model is applied to the first sub-system. On the other hand, a
Monte Carlo based stochastic model is utilized to the second
sub-system. The output of the first model will serve as the
input of the second model.

II. M ODEL-1: CONTROL THEORY BASED

DETERMINISTIC MODEL

In control theory, a dynamic system is described by a
finite number of variables,x1, ..., xn, called the “state”. The
canonical mathematical form for a nonlinear time varying
system with control is given by a differential equation system
of the type:

ẋ = f(t,x,u), (1)

y = h(t,x,u), (2)

wheret is the independent variable “time”,x is the state
vector of dimensionn, u is the control vector (or called
input) of dimensionm, y is the output vector of dimension
p. f andh are the functions of the state and control variables.
This is an m input and p output system. A fundamental
assumption in using this model is that the initial condition,
will be sufficient, together with the differential equation, to
determine the future evolution of the system uniquely.

In this part, four computational issues are addressed. (1)
For the molecular species that stimulate other molecular
species to be activated, their concentrations over time are
modeled by a damped harmonic oscillator. (2) The differen-
tial equation system that describes the biological system is
formulated based on mass action kinetics and singularly per-
turbed versions of mass action (Michaelis-Menten kinetics).
(3) A general external control scenario is provided.

A. The releasing of bio-molecules can be modeled by a
damped harmonic oscillator as follows.

C̈(t) + qĊ(t) + ω2(t)C(t) = 0, (3)

whereC stands for released bio-molecule.ω(t) indicates
the oscillator frequency.q is the damped parameter. A rea-
sonable hypothesis about releasing of bio-molecules is that
they are released periodically with a decreasing amount. This
is because periodical oscillation phenomenon is common
in biological system and this periodical pattern is indeed
observed from experimental data.

B. The phagocytes transmigration is modeled by a differen-
tial equation system.

The differential equation system that describes the bio-
logical system is formulated based on mass action kinetics
and singularly perturbed versions of mass action (Michaelis-
Menten kinetics). Specific format of differential equations
depend on the biological problems to be studied. For the case



study of this paper, the bio-molecules of histamine, H1/H2
receptor, and P/E selectins can be modeled as:

Ċhm(t) = khm1Chmr(t)− khm2Chm. (4)

Ċh1(t) =
kh1tChm(t)

kh1b + Chm(t)
− kh1Ch1(t) + kuh1uh1(t), (5)

Ċh2(t) =
kh2tChm(t)

kh2b + Chm(t)
− kh2Ch2(t) + kuh2uh2(t), (6)

Ċp(t) =
kptChm(t)

kpb + Chm(t)
− kpCp(t) + kupup(t), (7)

Ċe(t) =
ketChm(t)

keb + Chm(t)
− keCe(t) + kueue(t). (8)

whereChmr(T ) is released histamine that can be modeled
by a damped harmonic oscillator, equation (3).u(t)′s are
control variables that can be modeled according to the
following control scenario.

C. A general external control scenario.

The control variable in equations (1) and (2) are designed
to model block/unblock actions in biological knockout ex-
periments. The form of the control variables is given by:

u(t) = −Hε(t− T )C(t), (9)

or it takes the form as:

u(t) = −(1−Hε(t− T ))C(t), (10)

whereHε is a regularized Heaviside function to regulate
the control variable so that it is continuous for second
derivative with respect to timet. The variableT in (9)
and (10) represents the time when control begins to be
taken. The representation of (9) and (10) stands for the
block/unblock action in knockout experiments. Specifically,
the control variable in (9) represents the situation that block
action is taken at the beginning and unblock is conducted
after certain timeT . On the other hand, the control variable
in (10) describes an opposite case that unblock is taken at
the beginning and block is applied after certain timeT .

III. M ODEL-2: KINETICS MONTE CARLO ALGORITHM

BASED STOCHASTIC MODEL

Other than using chemical reaction kinetics that is the basis
for most of existing stochastic models in system biology,
a physical barrier-jumps kinetics model that is known as
the Bortz-Kalos-Liebowitz (BKL) algorithm or the kinetic
Monte Carlo (KMC) algorithm is adopted by us. The first
publication which described the basic features of the KMC
method was by Young and Elcock in 1966 [22]. The
KMC method is intended to simulate the time evolution of
some processes occurring in nature. It is commonly used
in physics, such as modeling surface diffusion and surface
growth.

In this section, three computational issues are discussed.
(1) Derive a new formula of transition rates to replace the

traditional computation in physics. (2) Determining param-
eters by Maximum likelihood estimation. (3) Outline the
procedure of KMC algorithm.

A. Derive the new formula of transition rates that are inputs
to the KMC algorithm.

Consider a system includesn statesx1, ..., xn and a set of
transitionsWi(xa → xb) from a statexa into other possible
statesxb, i = 1, ..., m. For eachWi there is a transition
probability per unit time, i. e. transition rateri. The transition
probability ri is determined by a set of variables{zj}, j =
1, ..., q(i). q(i) is a nature number that is associated withi. It
is to say that each transition might be influenced by different
groups of factors. Our goal is to formulate the transition
probability ri as a function ofz′js.

In a general case, the function ofz′js can be a polynomial
of degree at mostq(i):

fi(z) = β0 + β1z1 + ... + βq(i)zq(i) + ...

+β1q(i)z
q(i)
1 + ... + βq(i)q(i)z

q(i)
q(i) . (11)

The value offi(z) belongs to(−∞,∞). But the range
of the transition probabilityri is [0, 1]. Therefore,fi(z) and
ri can not be set equal at this point. To build a equation in
terms offi(z) and ri, two transformations are made in the
follows:

At first, we notice that the probability that theith transition
does not occurs is1− ri. Then the odds of theith transition
occurring vs not occurring is ri

1−ri
. The range of the odds

value is (0,∞). Take logarithm transform on the odds, we
haveln( ri

1−ri
) whose range is(−∞,∞) that is same range

of fi(z).
Assume the following equation hold.

ln(
ri

1− ri
) = fi(z). (12)

Then the transition probabilityri can be calculated by:

ri =
efi(z)

1 + efi(z)
. (13)

The parameters ofβ′s in fi(z) are determined by maximum
likelihood estimation.

B. Maximum likelihood estimation

Let y1, ..., ym be variables that indicate whether theith

transition occurring. It is assumed thatyi = 1 indicates
the ith transition occurring. On the other hand, ifyi =
0, it stands for theith transition not occurring. Then the
likelihood function can be written as:

L =
m∏

i=1

Pr(yi). (14)

Based on the definition ofri, we have:Pr(yi = 1) = ri, and
Pr(yi = 0) = 1− ri. Therefore,Pr(yi) = ryi

i (1− ri)1−yi .
The likelihood function becomes:



L =
m∏

i=1

ryi

i (1− ri)1−yi =
m∏

i=1

(
ri

1− ri
)yi(1− ri). (15)

Consider the Log likelihood function:

lnL =
m∑

i=1

yiln(
ri

1− ri
) +

m∑

i=1

ln(1− ri). (16)

Plug equation (13) into (16), we obtain:

lnL =
m∑

i=1

yifi(z)−
m∑

i=1

ln(1 + efi(z)). (17)

We want to maximize the Log likelihood function, equa-
tion (11), according to the parameters ofβ′s.

∂lnL

∂βj
= 0, for all possible j′s. (18)

In general case, the solving of (18) is not straightforward.
Newton-Raphson method, an iterative method, is conducted
here.

A number of biological systems comprise a series of
molecular level events. Therefore, in practice, the “state”
mentioned in above context actually is “event”. Various
factors represented by variablesz′s effect the probability
of event occurring and the extent of event. The specific
format of fi(z) in many cases can be obtained through
a priori biological knowledge. If this kind of information
is not available, then the optimal format offi(z) can be
derived through the above procedure where parameters are
determined for equation (11).

C. Outline the procedure of KMC algorithm.

(a) Set the timet = 0.
(b) Calculateri for all i.
(c) Calculate the cumulative functionRi =

∑i
j=1 rj for i =

1, ...,m wherem is the total number of transitions. Denote
R = Rm.
(d) Get a uniform random numberu ∈ [0, 1].
(e) Find the event that carry out transitioni by find i for
which Ri−1 < uR ≤ Ri.
(f) Carry out the found event.
(g) Get a uniform random numberu ∈ [0, 1].
(h) Update the time witht = t + ∆t, where∆t = −ln u

R .
(i) Got back to step (b) or stop.

The explanation and proof of the KMC algorithm proce-
dure can be found at[22].

IV. CASE STUDY OF PHAGOCYTE TRANSMIGRATION BY

USING HYBRID MODEL

As we known, phagocytes transmigration is a multi-step
process, including initial margination in the vessels, rolling
and firm adhesion of phagocytes to the vessel wall, and
extravasation. During the time of rolling and firm adhesion,
phagocytes are captured from blood stream. This multi-step
process is illustrated in Figure 1. In the reduced biological
process, it is assumed that three biological events occur: (1)

Phagocytes are captured. (2) Detachment of phagocytes. (3)
Phagocytes migrate into the extravascular space. A subset
of bio-molecules involved in phagocytes transmigration, i.e.
histamine, P selectin, E selectin, H1 receptor and H2 receptor
are considered.

Fig. 1. Multi-step process of phagocyte transmigration.

The phagocytes transmigration process is divided into two
sub-systems. (1) The first sub-system includes components
of histamine, P selectin, E selectin, H1 receptor and H2
receptor. The basic interactions among these components
are that histamine up-regulates P and E selectins and his-
tamine enhances H1 and H2 receptors. (2) The second sub-
system comprises aforementioned three biological events and
bio-molecules of phagocytes (polymorphonuclear leukocyte
(PMN)), P selectin, E selectin, H1 receptor and H2 receptor.
P and E selectins mediate the events of phagocytes capturing
and detachment. H1 and H2 receptors facilitate the event
of phagocytes migration into the extravascular space. The
effects of bio-molecules on biological events are verified
through a variety of biological knockout (KO) experiments
conducted in implanted mice.

In this section, we utilize hybrid model to simulate and
predict a reduced biological process of phagocytes transmi-
gration. Computational model-1 mentioned in section 2 is
applied to simulate dynamic of the first sub-system. On the
other hand, computational model-2 discussed in section 2 is
utilized to the second sub-system. The outputs of model-1
are served as inputs of model-2.

Computational simulation by the hybrid model is pre-
sented in the following. Simulation shows agreement with
the experimental results. Furthermore, predictions for some
un-explored knockout experiments are carried out.

A. Histamine modeling

The histamine residual measurement experiment up to
16 hours was carried out. Computational simulation is
conducted by a damped harmonic oscillator described as
equation (3) in section 2. Certain periodic pattern can be
observed in experimental data (Figure 2(a)). The simulation
result exhibits the same pattern (Figure 2(b)).



B. Modeling stochastic events of phagocytes capturing and
migration.

The time courses of biological events, such as capturing
of phagocytes, detachment of phagocytes and phagocytes
migration into the extravascular space, are predicted by
KMC simulation in the case of polymorphonuclear leukocyte
(PMN) transmigration (Figure 3(a)). The corresponding time
points when biological events occur are plotted (Figure
3(b)). The importance of P and E selectins in mediating the
capturing of PMN is supported by P/E selectins knockout
experiments. KMC simulation results of such P/E selectins
knockout experiments indicate that the captured PMN are
significantly reduced. As a result, the number of PMN
migration into the extravascular space is much reduced. This
can be seen by comparing Figure 4(a) to Figure 3(a). On
the other hand, the KMC simulation of H1/H2 receptors
knockout experiments shows that the captured PMN remains
the same level as usual, but the PMN migration into the
extravascular space is dramatically reduced (Figure 4(b)).
These two different simulation results reveal the fact that P/E
selectins and H1/H2 receptors effect the phagocytes trans-
migration differently by their mediating different biological
events.

C. Prediction of un-explored knockout experiments.

Certain un-explored knockout experiments can be pre-
dicted by the mathematical model. For example, a knockout
experiment can be designed as that no any knockout at
beginning and H1/H2 are blocked after the 6th hour. Then
the time course of recruited PMN might looks like Figure
5(a). Another knockout experiment can be the case that P and
E selectins are blocked at beginning, but they are recovered
after the 9th hour. Figure 5(b) presents this situation.

V. CONCLUSION

A hybrid computational model that combines control theory
and kinetics Monte Carlo (KMC) algorithm is built to study
in silico the molecular mechanisms governing phagocyte
transmigration. The simulation reveals the facts of histamine,
H1/H2 receptors, and P/E selectins play important roles
in phagocyte transmigration process. These computational
results agree with the experimental reports. The stochastic
nature inherent to phagocyte transmigration is captured by
KMC algorithm. Various biological knockout experiments
are mimicked, and un-explored knockout experiments are
predicted. The ability to predict un- explored knockout
experiments may facilitate experiment design itself. For ex-
ample, different combinations of interested components can
be chosen to be blocked/unblocked; various block/unblock
time can be tested; the temporal order of block/unblock can
be specified.
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