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Using ANOVA to Analyse Thalidomide’s Molecular Mechanisms in Human PBMC
Microarrays

Renata T. Paiva, Barbara C. Dias, Marcelo Ribeiro-Alves, Ulisses G. Lopes and Flávio F. Nobre

Abstract— Thalidomide is an anti-inflammatory and im-
munomodulatory drug that is the treatment of choice for
erythema nodosum leprosum (ENL), an inflammatory cuta-
neous and systemic complication of multibacillary leprosy. Its
use in leprosy and other conditions is controversial due to
its teratogenic effects. Fifty years after the development of
thalidomide, its action mechanism is still not well understood. In
the present study we analyzed the in vitro effect of thalidomide
on global gene expression in cultured human Peripheral Blood
Mononuclear Cells (PBMC) of normal donors. We normalized
the background subtracted spotted cDNA microarray data
using a locally weighted linear regression and modeled its resid-
ual by a two-step analysis of variance to detect differentially
expressed PBMC human genes in response to thalidomide.
Using the full set of spotted genes, 13 genes were identified
as differentially expressed genes. A reduced set was derived
with a direct simple filtering approach and this set resulted in
eight differentially expressed genes. Among these 21 genes, 15
are involved in the immune regulation processes.

I. INTRODUCTION

Thalidomide (N-ftalimil-glutarimida) is the treatment of
choice for ENL, or type II reaction, an acute inflammatory
state occurring in lepromatous leprosy characterized by sys-
temic symptoms, including fever, painful cutaneous lesions,
arthritis, glomerulonephritis, and the presence of circulating
immune complexes. In October 1957, the German company
Chemie Grünenthal introduced Thalidomide as a “safe” over-
the-counter sedative/tranquilizer, subsequently marketed in
46 countries for morning sickness during pregnancy. It was
banned from commercial use in 1963, after discovering it
exerted teratogenic effects if taken within the 34th and 50th

day of pregnancy.
The history of thalidomide was changed by serendipitous

discovery by Shenskin in 1965, which reported administering
thalidomide to an insomniac patient with erythema nodosum
leprosum. The patient symptoms disappeared and the skin
lesions healed completely [1]. Several immunologic and
potentially anti-inflammatory activities of thalidomide have
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been described, including the inhibition of the proinflam-
matory cytokine tumor necrosis factor (TNF), inhibition of
the angiogenesis and the co-stimulation of interleukin (IL-2)
by T cells. ENL has been associated with increased plasma
TNF levels, which was reported to be reduced after treatment
with thalidomide. Since it is known that thalidomide acts
in different diseases it is uncertain whether the efficacy of
thalidomide in ENL is exclusively mediated by the inhibition
of TNF [2]. This cytokine is an important mediator in process
like apoptosis (programmed cell death), cellular prolifera-
tion and differentiation, tumorigenesis and viral replication.
Due to its action on TNF, thalidomide is used in several
experimental treatments of different pathological conditions
characterized by increased plasma levels of this cytokine.

Spotted complementary deoxyribonucleic acid (cDNA)
microarray is a technique in which the relative level of ex-
pression from thousands of genes can be measured concomi-
tantly and is used to study the relative expression between
treatment and control samples. Microarrays experiments are
very costly precluding the use of large number of replicates.
When the number of replications is small, careful design
and analysis are required to find meaningful information and
to identify, from the hundreds or thousands spotted genes,
those that have differential expression between samples.
Microarrays are often used as an screening tool, and further
molecular assays for identified differentially expressed genes,
such as a semi quantitative and Real Time Polimerase
Chain Reaction (RT-PCR), are usually required to confirm
obtained results. In microarray experiments several sources
of systematic variation are present and the most common
bias is the labeling difference between the two fluorescence
dyes. This bias can hamper the direct interpretation of the
data and averaging over replicates may increase variation and
noise since they may have different characteristics in dye
bias and ratio distribution [3]. Before selecting genes that
are differentially expressed between samples, an important
step is to eliminate questionable or low quality measurements
and use transformations to adjust the measured intensities for
appropriate comparisons [4].

The main focus of this study was to identify candidate
human genes responsive to thalidomide exposure that may
regulate its immune activity. We explore the in vitro effect of
this drug on global gene expression of cultured human Pe-
ripheral Blood Mononuclear Cells (PBMC) of heath donors
using analysis of variance (ANOVA) following a proposal
by Kerr et al [5].
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II. MATERIALS AND METHODS

The human oligoarrays were spotted at the Microarray
Core Unit at UNAM, Mexico (http://microarrays.
ifc.unam.mx/principal.html). Three cDNA
samples from cultured Peripheral Blood Mononuclear
Cell (PBMC) obtained from three healthy donors
were stimulated with thalidomide and its diluent
dimethyl sulfoxide (DMSO) forming the treatment group
(PBMC+DMSO+THALIDOMIDE). The control group
comprised cultured PBMC cells stimulated with DMSO for
two hours (PBMC+DMSO). We used a reference design
comparing the treatment and control group with a reference
group consisted of a pool of cultured PBMC non-exposed
cells (PBMC). For each of the two conditions, treatment
and control, target cDNA mixed with the reference PBMC
was hybridized in three microarray slides containing 9,984
human 50mer oligonucleotides (MWGBiotech Company)
spotted in duplicate (total of 19,968 spots). In two arrays
the treatment and control samples were labeled using
red fluorescent, Cy5, and the non-exposed samples were
assigned to the green fluorescent dye, Cy3. These arrays
are referred here as direct labeling. To control dye labeling
differences a third array used reversed dye labeling.

The acquired image of fluorescence intensity was seg-
mented and background corrected to obtain the expression
level Yijkg(for each array i ∈ {1, ..., 6}; dye j ∈ {1, 2}
for Cy5 (R) and Cy3 (G) dyes, respectively; conditions
k ∈ {0, 1, 2} for reference, control and treatment; and gene
g ∈ {1, ..., n}). Initial data analysis was carried out to
evaluate spot quality. Among the different available methods
[6] we used here a simple approach considering the ratio
of the background correct signal intensities, obtained as the
difference between signal intensities and local background,
and its background intensity (signal-to-noise ratio). If the
signal-to-noise ratio were less than 2, the corresponding spot
received a penalty flag in the corresponding array. About
10 thousand spots in all slides were flagged. Since the
experiment is not balanced for the dye factor, we select
for further analyses the direct array with less flagged spots
and the dye-swap array. A second approach was based on
eliminating the genes flagged in more than four spots in the
selected slides. The experimental design is presented in table
I.

TABLE I
EXPERIMENTAL DESIGN

Array Cy5 Cy3
1 PBMC+DMSO PBMC
2 PBMC PBMC+DMSO

3 PBMC+DMSO+
THALIDOMIDE PBMC

4 PBMC PBMC+DMSO+
THALIDOMIDE

MA plots is an exploratory tool useful to identify sys-
tematic variations due, specially, to different dye labeling
efficiencies and differences in concentration of DNA on
each array. The MA-plot reveals whether the data exhibits

Fig. 1. MAplot for complete (a and b) and reduced (c and d) dataset before
and after lowess transformation

an intensity-dependent structure, and it is based on plot-
ting M = log2

(
R
G

)
versus A = 0.5 × log2 (R×G).

Presence of systematic effects impairs a proper analysis
of individual slides and comparison of expression levels
between slides.These systematic effectc can be revealed by a
nonlinear pattern in the MA-plot. Fig. 1 displays MA-plots
for both approaches, using all genes and the reduced set.

The raw intensity data shows a nonlinear pattern in MA-
plot, suggesting the need for transformation. For each slide
we applied the intensity global lowess transformation, a
locally weighted scatter plot smoothing, to the logarithm
data (base 2) for normalization and variability reduction of
data. The results, after removing the estimated lowess curve,
are shown in fig. 1(c and d). The transformed data were
analyzed using the mean of each replicate with the second
array considered as dye swap experiment, resulting in four
experiments, with two dye swaps slides.

Analysis was done within the R programming environment
[7] using the MAANOVA package [8] which consists of an
analysis of variance approach for microarray experiments
proposed in Kerr et al [5]. Wolfinger et al [9] proposed the
2-stage ANOVA model implemented in the R/maanova. An
ANOVA model for microarray experiment can be specified
in two stages. The first stage is the normalization model,

yijkgr = µ+Ai +Dj +ADij + rijkgr (1)

where, µ captures the overall mean, the other terms capture
the overall effects due to arrays (A), dyes (D) for labeling
reactions and interaction between array and dye (AD). Resid-
uals from this first stage are used as inputs for the second
stage which models gene-specific effects:

rijkr = G+AGi +DGj + V Gk + εijkr (2)
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Fig. 2. Residual Plot for the best model in complete dataset with Cy5 dye (a) and Cy3 dye (c) and using the reduced set with Cy5 (b) and Cy3 (d)

here, (G) captures the average effect of the gene, (AG)
captures the array by gene variation, (DG) captures the dye
by gene variation, (VG) captures the effects for the experi-
mental varieties. In this study, we had three conditions: non-
exposed, DMSO exposed and Thalidomide+DMSO treated
PBMC. The ε term accounts for unexplained factors and is
assumed as the error term with mean zero. For the full data
set we used the mixed model that treats some factors in an
experimental design as random samples from a population.
In other words, it assumes that if the experiment were to be
repeated, the same effects would not be exactly reproduced,
but that similar effects would be drawn from a hypothetical
population of effects. In this work, we treated the array
effect (AG) as random factor in ANOVA model. For the
reduced set we used the fixed effect model that assumes
independence among all observations and only one source
of random variation. Fig. 2 plots the residuals versus fitted
values for each array and shows adequate adjustment of the
models.

The F test is designed to detect any pattern of differ-
ential expression among several conditions by comparing
the variation among replicated samples within and between
conditions. MAANOVA provides four types of F tests that
can be used individually or in conjunction: The gene-specific
F test (F1), a generalization of the gene-specific t test, is
the usual F test and it is computed gene-by-gene. As with
t tests, we can also assume a common error variance for
all genes, which results in the global variance F test (F3).
A middle ground is achieved by the F2 test, analogous to
the regularized t test which uses a weighted combination
of global and the gene specific variance estimates in the
denominator [10].

The test statistic Fs uses a variance estimator that makes no

prior assumptions about distributions of the variance across
genes. It behaves well when variances are constant and
also if they vary from gene to gene. In the present study,
we used the suggested Fs test, since it does not require
assumption of a common variance. A statistic like Fs should
be more efficient with limited information to estimate the
gene specific variance components [11]. Nominal p-values
can be obtained for the F test, from standard tables, but
the F2, F3 and Fs statistics do not follow the tabulated
F distribution and critical values should be established by
permutation analysis.

Permutation analysis is a nonparametric approach to es-
tablish the null distribution of a test statistic. The key to
developing a permutation strategy is to identify units in the
experiment that are exchangeable under the null hypothesis.
In microarray experiments, if we allow for gene-specific vari-
ance heterogeneity, then the unit must be the whole arrays.
Furthermore, the arrays that are to be shuffled will depend on
the design of the experiment and the factor(s) being tested.
Two-color arrays are slightly more complex than single color
systems as the pairing between the two channels of the array
must be maintained in the permuted units. To execute the
permutation analysis, MAANOVA generates random shuffles
(p = 1, . . . , P ) of whole array units and compute a new
set of statistics Fg(p)(g = 1, . . . , G). We did only 100
permutations. In MAANOVA, to reduce the granularity of the
gene-specific null distribution, a common null distribution for
each test statistic is established. This distribution is obtained
using the entire collection of Fg(p) values over indices p and
g based on the assumption that the F statistics have common
null distributions across genes [12].

Relative fold change was calculated for all genes as the
ratio between treatment sample and corresponding control
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value. If this number was less than one the (negative)
reciprocal is listed (e.g., 0.75, or a drop of 25% from control
is reported as -1.3 fold change).

III. RESULTS

The proposed procedure generates a series of p-values, one
for each gene in the experiment. Using a significance level
of 0.001 for the Fs statistic we selected a total of 21 genes
differentially expressed, 13 for the full set (table II) and 8 for
the reduced set (table II). The Volcano plots for both results
are shown in fig. 3 (a and b). This plot arranges genes along
dimensions of biological and statistical significance. The x-
axis is the expression ratio between the two groups (on a log
scale) representing the biological impact of the change. The
y-axis represents the p-value for a statistic test of differences
between samples (on a negative log scale) and represents the
statistical evidence, or reliability of the change.

TABLE II
DIFFERENTIALLY EXPRESSED GENES USING THE COMPLETE DATASET.

Acc. Symbol p-value FC
NM_018378 FBXL8 0.0001 2.0
NM_002718 PPP2R3A 0.0003 2.2
NM_000665 ACHE 0.0003 2.1
NM_014499 P2RY10 0.0004 -1.7
NM_000264 PTCH1 0.0004 -2.3
NM_014230 SRP68 0.0004 -2.1
NM_000673 ADH7 0.0004 2.9
NM_022118 RBM26 0.0003 -1.7
NM_003678 C22orf19 0.0004 -2.1
NM_022163 MRPL46 0.0005 2.7
NM_025094 hypothetical protein FLJ22184 0.0005 -1.6
NM_004455 EXTL1 0.0007 -1.9
NM_003192 TBCC 0.0009 2.9

TABLE III
DIFFERENTIALLY EXPRESSED GENES USING THE REDUCED DATASET.

Acc. Symbol p-value FC
NM_022163 MRPL46 <0.0001 -2.6
NM_002032 FTH1 <0.0001 -2.1
XM_052761 Hypothetical protein 52761 0.00001 -1.8
NM_000336 SCNN1B 0.00007 1.7
NM_000581 GPX1 0.0001 -1.6
NM_001020 RSP16 0.0001 -1.6

XM_069860
similar to similar to ribosomal

protein l31 (h. sapiens)
loc136380

0.0001 -1.6

NM_024597 MAP7D3 0.0001 1.6

IV. DISCUSSION

In the present study, PBMCs were tested for thalido-
mide treatment using microarrays containing 9,984 oligonu-
cleotides spotted in duplicate to detect differentially ex-
pressed genes. It is well known in the literature that using
the raw intensity ratios to infer differentially expressed genes
is an inefficient procedure, since the inherent variability
affects the measured expression as shown in fig. 1 (a and
c). It is common practice in microarrays experiments to
apply appropriate transformations to deal partially with this

Fig. 3. Volcano plot with results of Fs test. Differentially expressed genes
are shown above the line for complete dataset (a) and reduced set (b). In
reduced set, two genes had same values for expression ratio and p-value.

problem. Here, we applied lowess to the log2-ratio of stimu-
lated and control intensities to obtain a more symmetrical
distribution, correcting the curvature of the MA-plot (fig.
1c and 1d). This study screen changes in gene expression
between two conditions using a reference model. This has
been achieved using ANOVA modeling for the transformed
data. The sample term in the model was the focus of interest
to select a smaller set of genes that need to be further tested
with real time PCR probing. The ANOVA model generates
estimates of p-values for the relative expressions used to rank
the observed differential expressions.

We used the mixed model for the complete database,
with array as a random effect. The fixed model was used
for the second approach with eliminated genes based on
the signal-to-noise ratio. For the analysis using all 9,984
genes, the list of differentially expressed genes belongs to
the flagged set. Therefore, the resulting list from the reduced
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set does not show intersection with this result. Analysis of
the fitted model showed that the residuals have heavier-
tailed distributions than normal distribution (data not shown)
precluding the use of standard F distribution, therefore, p-
values were estimated via bootstrapping, as suggested in the
MAANOVA package [8], with the knowledge that it has
lower statistical power.

The results presented in table II and III, show the un-
adjusted p-value, the fold-change and a summary of the
function of genes that showed differential expression for both
cases, full dataset and filtered dataset. We opt not to use
multiple test adjustments for two main reasons. First, the
microarray experiment was set up as an exploratory tool to
find among a large set of genes a smaller set for further
confirmatory study using RT-PCR. Second, a preliminary
analysis showed that the majority (99%) of the genes had
fold-changes below 2. According to some authors [13], [14],
in a exploratory analysis when sensitivity is the major goal
of a study, multiple comparison correction is not strictly
necessary. In this work we found only 21 genes differentially
expressed and if we apply even a less stringent multiple test
correction, such as the pFDR, we would find only one gene
as statistically significant.

To improve the exploratory results, we obtained the
function of the differentially expressed genes from Entrez
Gene (www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=gene), a gene-specific database that has
tracked unique identifiers (GeneID) for genes and reports
information associated with these identifiers for unrestricted
public use [15]. The search was carried out using the
access number of the gene. Table II shows the differentially
expressed genes that could provide some information
about thalidomide’s mechanism of action found using
all genes. Here we describe for some genes the related
information found at Entrez Gene and that deservers further
consideration for RT-PCR confirmatory analysis.

The gene F-box and leucine-rich repeat protein 8 is
connected to the ubiquitin system. This system is related to
the path of degradation of cellular proteins, a high complex,
temporally controlled, and tightly regulated process that
plays major roles in a variety of basic pathways during
cell life and death. It includes the breakdown of muscle
protein (cachexia), which occurs in diseases such as cancer
and the Acquired Immune Deficiency Syndrome (AIDS).
This system is also involved in processes related to immune
and anti-inflammatory responses, since processing of most
known MHC class I antigens is mediated by the ubiquitin-
proteasome pathway. Thalidomide presents important re-
sponse in these processes: immune and anti-inflammatory
responses and loss of muscle protein [16], [17], [2]. Despite
the observed low-fold change, our analysis suggests an
increased expression in relation to DMSO, with p-value less
than 0.0002.

The results also showed the gene PTCH1 as differentially
expressed, with a fold-change lower than one, showing that
this gene is suppressed. This gene acts in the formation of
embryonic structures and it is well known that the principal
thalidomide’s side effect is teratogenicity [16]. Besides these

effects, thalidomide can inhibit the replication of HIV-1 in
vitro [18], but the mechanism has not been elucidated.

Our analysis found that the gene PP2R3A, that codes
Protein Phosphatase 2, subunit regulatory B", alpha, is dif-
ferentially expressed, with fold-change of 2.29 (p-value of
0.0003). Protein Phosphatase 2 is one of the four major
Ser/Thr phosphatases and is implicated in the negative con-
trol of cell growth and division. It functions as an inhibitor
of G0 to M transition of the cell cycle and is involved in
other key cellular processes such as the control of RNA
transcription. In many cell types, Protein Phosphatase 2A
exists as two forms, with differents substrate specificities, a
holoenzime with two regulatory sub-units (A and B) and cat-
alytic subunit C, and a enzime core, with A and C sub-units.
The balance between this two enzymatic forms is important
to phosphatase activity and affects HIV-1 gene expression
and viral replication. [19]. Furthermore, the observation that
okadaic acid (OKA), a potent inhibitor of PP2A and protein
phosphatase 1, induces NF-κB binding and activates the
HIV-1 promoter suggested that PP2A might inhibit HIV-1
transcription and, hence, replication [20].

Filtering out bad spots caused by adverse experimental
conditions is a useful way to reduce variability, allowing
the biological differences to come the fore [21]. Filtering
is a pre-processing step used to identify and remove spots
where measured intensities are not distinguished from the
background noise. A filtering procedure must provide a
balance between reliable measurements and minimimal loss
of information [22]. The simple filtering criteria used in this
work is a conservative approach, eliminating genes that could
be differentially expressed despite their low signal-to-noise-
ratio. This might explain why all genes selected using the
complete set were flagged.

In the reduced set (table III) we found 8 differentially
expressed genes. Two genes could be directly involved
in thalidomide’s mechanisms of action. The gene Ferritin
Heavy Chain 1 (FTHC1) acts during inflammation antag-
onizing apoptosis induced by tumor necrosis factor (TNF)
through NF-κB transcription factors action. Pham et al [23]
identified FTCH1 as an essential mediator of the antioxi-
dant and protective activities of NF-κB. FTHC1 is induced
downstream of NF- κB and is required to prevent apoptosis
triggered by TNF. In our findings this gene is downregulated
(table III) and this could be a result for thalidomide’s action
on TNF. Another important gene is the ITH5, a member of
the inter-α-trypsin inhibitor (ITI) family formed by a group
of proteins built up from one light chain and a variable set
of heavy chains. Originally identified as plasma protease
inhibitors, recent data show that ITI plays a role in the
extracellular matrix stabilization and in prevention of tumor
metastasises [24]. In this analysis this gene is upregulated
and this could help to explain the antitumoral activity of
thalidomide.

V. CONCLUSION

The ANOVA model is a flexible technique for detect-
ing differentially expressed genes. The appropriate use of
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this technique allows the selection of putative differentially
expressed genes among several variants, even in adverse
conditions as with restricted replication. Microarrays are
potentially powerful tools for investigating the mechanism
of drug action. Clearly, a deeper investigation will provide
evidence for using gene expression profiles to understand the
molecular basis of thalidomide’s mechanism of action and to
enable the development of new drugs that reduce its adverse
effects.
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