
  

  

Abstract: In the present work we discuss the potential of 
recently developed classification algorithm, Learning Vector 
Quantization (LVQ), for the analysis of Laser Induced 
Fluorescence (LIF) Spectra, recorded from normal and 
malignant bladder tissue samples.  The algorithm is prototype 
based and inherently regularizing, which is desirable, for the 
LIF spectra because of its high dimensionality and features 
being settled at widely spaced intervals (sparseness). We 
discuss the effect of different parameters influencing the 
performance of LVQ in LIF data classification.  Further, we 
compare and cross validate the classification accuracy of LVQ 
with other classifiers (eg. SVM and Multi Layer Perceptron) 
for the same data set. Good agreement has been obtained 
between LVQ based classification of spectroscopy data and 
histopathology results which demonstrate the use of LVQ 
classifier in bladder cancer diagnosis. 

I. INTRODUCTION   

ladder cancer refers to any form of cancers that affect 
the urinary bladder[1]. The incidence of bladder 

epithelial tumors has been steadily increasing in the past 
years. Each year, this cancer is diagnosed in approximately 
275000 people worldwide, and about 108000 die from this 
disease[1]. In fact, it is the fifth most common cancer both in 
the western world and in developing countries [2,4]. About 
95% of bladder tumors are of epithelial origin, the remainder 
being mesenchymal tumors[5].  Bladder cancer is the fourth 
most common type of cancer in men and the ninth most 
common cancer in women[6]. The American Cancer Society 
estimates that in 2008 there will be about 68,810 new cases 
of bladder cancer diagnosed in the United States. In which  
about 51,230 are men and 17,580 are women respectively 
[8]. One reason for its higher incidence in men is that the 
androgen receptor, which is much more active in men than 
in women, plays a major role in the development of cancer 
[9]. 
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The possible symptoms for bladder cancer are blood in the 
urine [5] pain during urination and frequent urination or 
feeling the need to urinate without results [5]. Exposure to 
carcinogens, habit of smoking increases the risk for bladder 
cancer [2]. Occupational risk factors include recurrent and 
early exposure to hair dye, and exposure to dye containing 
aniline, a chemical used in medical and industrial dyes [2].  
Incidence of bladder cancer increases with age [1,10,11].  
People over the age of 70 develop the disease 2 to 3 times 
more often than those aged 55–69 and 15 to 20 times more 
often than those aged 30–54[10,11]. Developments of 
methods for the early diagnosis of cancers by detecting 
tumor makers are getting momentum these days [12]. 
 
Several spectroscopic techniques are coming up as useful 
methods for the diagnosis of malignancies. Raman 
spectroscopy and Fluorescence spectroscopy are getting 
importance as promising techniques in cancer diagnosis [13-
16]. These techniques provide information about the 
biochemical changes that occur during disease conditions. 
Laser induced fluorescence technique is one of the matured 
methods to discriminate between normal and malignant 
conditions in oral, cervical and column cancers [17-20].  All 
the above methods generate large quantity of spectroscopy 
data and they need reliable classification algorithms for 
clinical applications.  

 
Exploration and analysis of data in the field of clinical 
proteomics have become one of the key problems in 
computational proteomics [21]. From mathematical point of 
view, the data space to be explored is sparsely filled. 
Thereby, the spectra may be overlaid by noise such that the 
contained signal is difficult to extract. Another problem 
expected to arise for the data analysis methods is due to high 
dimensionality: The data can always be separated by using 
more or less independent separation criteria [22]. Thus any 
method is confronted with the problem of detection of the 
underlying regularities. Therefore, advanced methods are 
required to deal with high dimensional, sparse, noisy data 
analysis.  

 
In the present work we will give insights to recently 
developed prototype based classifier LVQ, which fulfill the 
above mentioned requirements for classifying LIF data. 
However application of LVQ in mass spectroscopy data has 
been studied previously in [21]. In order to test the 
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application of LVQ we have applied the LVQ method for 
Laser Induced Fluorescence data recorded from normal and 
malignant bladder tissues. However, this work is not meant 
for the early diagnosis of the diseases, where as, it may be a 
useful tool for surgeon for the demarcation of the normal 
site with the diseased part of the bladder.  In corporation of 
reliable classification algorithms along with the LIF 
technique will be useful for the objective diagnosis of the 
disease.   

II. MATERIALS AND METHODS 
The essential parts of the Laser Induced Fluorescence (LIF) 
system (Figure 1) consist of a HeCd laser (Kimmon,  Japan)  
used for the 325 nm excitation of the tissue, Spectrograph 
(PI-Acton, USA)  disperses the collected radiation in 
wavelength components which is recorded using a Charge 
Coupled Device (CCD) (Andor, Ireland). A seven fibers 
bundle probe was used to deliver laser line on the tissue 
surface as well as to collect the resulting fluorescence signal. 

A.  Sample collection and storage 
Bladder tissue samples were collected from patients, with 
informed consent, who had under gone surgery at Kasturba 
Medical College, Manipal. Ethical clearance has obtained 
from the Manipal University Ethical Committee for the 
present study.  Clinically normal samples were also 
collected during the surgical procedure. Samples obtained 
were immediately kept in normal saline and taken for the 
spectroscopy experiments, otherwise stored at -85o C deep 
freezer. Fluorescence was recorded at 2-12 different sites on 
both upper and lower surfaces of the tissue.   We have used 
30 spectra each from normal and bladder cancer patients for 
the present study.  

B. Data Processing 
1) Preprocessing and feature selection: The LIF spectra as 

shown in figure 2, have to be preprocessed before the 
analysis. Preprocessing aims to correct intensity and 
wavelength values in order to: (i) remove background (ii) 
reduce noise and (ii) make spectra comparable 
(normalization) [23]. This includes Baseline correction, 
Normalization and Peak alignment Baseline subtraction uses 
an iterative algorithm to attempt to remove the baseline 
slope and offset from spectrum by iteratively calculating the 
best fit straight line through a set of estimated baseline 
points. Normalization enables the comparison of different 
samples since absolute peak values of different fraction of 
spectrum could be slightly shifted [24, 25].  

Spectroscopy data classification problem is typical in the 
sense that the number of features is much larger than the 
number of observations (1024 data points each for 60 
spectra in total), but in which no single feature achieves a 
correct classification, therefore we need to find a classifier 
which appropriately learns how to weight multiple features 
and at the same time produce a generalized mapping which 
is not over-fitted. A simple approach for finding significant 
features is to assume that each wavelength value is 
independent and compute a two-way t-test and wilcoxon test 

[26,27]. The effect of feature selection on the basis of these 
testes on accuracy of LVQ classification is reported in 
discussion part of this paper. After extracting significant 
features, next step is to build a classifier. 

2) Feature classification: The automation of classification 
through the use of Artificial Neural Network is a common 
practice today, giving remarkable benefits [27]. 
Classification is inherently a discrimination problem. Recent 
research [21,24,29,30] shows that for problems where 
discrimination is the main concern, attacking discrimination 
problems by density estimation may be inferior to more 
direct approaches. Still, it may be desirable to formulate the 
models in terms of generative, probabilistic models, while 
the learning procedure aims at being able to discriminate 
well. 

3) LVQ classifier: In this paper, we used LVQ, or 
Learning Vector Quantization, which is a prototype-based 
supervised classification algorithm. LVQ is a special case of 
an artificial neural network, more precisely, it applies a 
winner-take-all Hebbian learning-based approach [31]. 
Learning Vector Quantization is a precursor of the well-
known self-organizing maps (also called Kohonen feature 
maps) and like them it can be seen as a special kind of 
artificial neural network [32]. Both types of networks 
represent a set of reference vectors, the positions of which 
are optimized w.r.t. a given dataset.  LVQ is a learning 
codebook-based classifiers, where the codebook is 
expressed in terms of probabilistic models, but where the 
training procedure is discriminative in nature [32,33,34]. 
The training algorithm is derived from the LVQ algorithm 
that uses vector quantization [35,36,37], where we assume a 
codebook which is defined by a set of M prototype vectors. 
(M is chosen by the user and the initial prototype vectors are 
chosen arbitrarily). An input belongs to cluster i if i is the 
index of the closest prototype (closest in the sense of the 
normal Euclidean distance). This has the effect of dividing 
up the input space into a Dirichlet tessellation which is a 
special kind of decomposition of a metric space determined 
by distances to a specified discrete set of objects in the space 
[38,39].  

A neural network for Learning Vector Quantization 
consists of two layers: an input layer and an output layer. It 
represents a set of reference vectors, the coordinates of 
which are the weights of the connections leading from the 
input neurons to an output neuron. Hence, one may also say 
that each output neuron corresponds to one reference vector. 
LVQ is also defined by learning function, the activation 
function of neurons that allows non-linearity to be 
introduced into LVQ training and determines the elasticity 
of weight changes. It therefore can improve convergence in 
training, in present study we have used LVQ version 1 [31] 
and 2 [40,41]. LVQ is also characterized by introducing a 
hidden layer in training a feed-forward neural network that 
allows for a multitude of functions to be learned and 
represented. Performance of LVQ is also governed by 
number of hidden neurons in hidden layer [36]. 

The learning method of learning vector quantization is 
often called competition learning, because it works as 



  

follows: For each training pattern the reference vector that is 
closest to it is determined. The corresponding output neuron 
is also called the winner neuron. The weights of the 
connections to this neuron - and this neuron only: the winner 
takes all - are then adapted. The direction of the adaptation 
depends on whether the class of the training pattern and the 
class assigned to the reference vector coincide or not. If they 
coincide, the reference vector is moved closer to the training 
pattern, otherwise it is moved farther away. This movement 
of the reference vector is controlled by a parameter called 
the learning rate [41,42]. It states as a fraction of the 
distance to the training pattern how far the reference vector 
is moved. Usually the learning rate is decreased in the 
course of time, so that initial changes are larger than changes 
made in later epochs of the training process. Learning may 
be terminated when the positions of the reference vectors do 
hardly change anymore as shown in LVQ algorithm below. 
In learning vector quantization classes are predefined ie a set 
of labeled data act as a target. Here the goal is to determine a 
set of prototypes the best represent each class label. The 
significant features identified will act as the inputs to the 
LVQ. Figure 3 shows a typical LVQ based classifier.  

 
 
4) The generalized learning vector quantization 

algorithm: 

Step 1: Choose the number of clusters M  

Step 2: Initialize the prototypes w*1,... w*m (one simple 
method for doing this is to randomly choose M vectors from 
the input data)  

Step 3: Repeat until stopping criterion is satisfied. 

Step 4: Randomly pick an input x. 

Step 5: Determine the "winning" node k by finding the 
prototype vector that satisfies following  
 
|w*k-x| <= | w*i - x | (for all i)                                           (1) 
 
note: if the prototypes are normalized, this is equivalent to 
maximizing w*ix  

Step 6: Update only the winning prototype weights 
according to 
w*k(new) = w*k(old) +  μ ( x - w*k(old) )                         (2) 

Where  μ  is learning rate. 

III. VALIDATION AND TESTING 

The dataset is divided into training, cross-validation and 
testing. Cross-validation dataset is used to measure the 
training performance of LVQ during training and stop 
training if necessary. The testing dataset is not used in any 
way during training and hence provides an independent 
measure of training performance. Divided up into training, 

validation and test sets. We have analyze the LVQ 
performance with different combination of    validation and 
test sets containing each 10, 20 and 25 % of total data 
samples (60 spectra) , leaving 80,60 and 50% of total data 
samples (60 spectra) for training respectively. 

Classification rate is calculated by building a 
classification matrix from number of detected 
samples(Cancerous classified as cancerous), false positives 
samples (cancer samples classified as normal), true positives 
samples (normal samples classified as normal), false alarms 
samples (normal samples classified as cancerous).  

IV. RESULT AND DISCUSSION 

A. Parameters influencing the performance of LVQ 

1) Criteria for feature selection: Figure 4 shows the 
variation of classification rate of LVQ with respect to the 
feature selection criteria on the basis of ranking by ttest and 
Wilcoxon test as explained earlier. From figure It is worth 
nothing that Wilcoxon based feature selection gives more 
significant increase in classification rate (P<0.05) as 
compare to ttest. This is also justified by the fact that ttest 
assumes normal distribution while wilcoxon is non 
parametric test.  

2) Learning rate: A range of learning rates was looked at 
for different combination of validation and testing input 
samples as explained earlier. This is done in order to give a 
good idea of what learning rates are most suitable for 
training a LVQ on the LIF dataset. This is a fairly broad 
investigation though and so although it was the intention to 
find good leaning rates, show other characteristics related 
resulting from training. Figure 5 shows the variation of LVQ 
classification rate with respect to learning rate 0.01 and 0.1 
for 150 cycles. It is observed that network is relatively stable 
at around 0.01, and provide better classification rate 
(P<0.05). However this in contrary to the fact that, the error 
tends to converge more quickly as the learning rate is 
increased, although this increases the deviation of results 
obtained at around 0.1 learning rate. The results could be 
made more significant by looking at more runs of the 
network for each learning rate, and by examining more 
learning rates within certain ranges. 

3) Learning function: Figure 6 shows the effect of learning 
function version 1 and 2 on LVQ classification rate. The 
results shows that on average, the LVQ version 2 function 
performs better than the other function ie LVQ version 1 
since LVQ 2(P<0.01) has more significant increase in 
classification rate than LVQ 1(P<0.05). 

4) Number of hidden neurons: Figure 7 shows the 
variation of classification rate with number of hidden 
neurons 2 (P<0.05) and 5 (P<0.01). It shows that rate of 
classification increases as number of hidden neurons 
increases. Using only one or two hidden neurons, the 
network is incapable of learning and the high error rates on 



  

both testing and training sets indicate this.  Statistically there 
is no significant difference between the results where the 
number of hidden neurons is greater than 5.  

Table I shows the optimal parameters of LVQ chosen for 
LIF data classification. It is also worth nothing that, all 
figures shows either increase in classification rate or no 
change, as we move along x axis so it is also concluded that 
reduction in LIF data sample improves LVQ performance.  
B.  Comparison with other classifier: After selecting an 
optimal parameters of LVQ, we compare the performance of 
LVQ with comprehensive classification algorithms, support 
vector machines (SVM) [43]. Sequential Minimal 
Optimization (or SMO) [44] is applied to train Support 
Vector Machines (SVMs). Training an SVM requires the 
solution of a very large quadratic programming (QP) 
optimization problem. SMO breaks this large QP problem 
into a series of smallest possible QP problems. Both LVQ 
and SVM belong to the class of prototype based classifier. 
The basic difference between them is that SVM takes data 
points on the class borders as prototypes, whereas LVQ 
prototypes are local averages of data points, which are 
nearby or on the class borders. We have trained SVM with 
same number of rank features as used for LVQ using 
Wilcoxon test. We have generated classification result using 
SVM for LIF data set using different kernels which includes 
linear, quadratic, and polynomial. Kernel is one of the 
important concepts in SVM and plays very important role. 
Kernel function computes the inner product of two vectors 
in the feature space and thus implicitly defines the mapping 
function [43]. We also compared LVQ with Multi Layer 
Perceptron (MLP) [45] which estimates the discriminating 
functions from training data with fairly simple algorithms 
such as backpropagation that is based on gradient descent. 
TABLE II shows the classification accuracy for different 
SVM kernels. We found that In all cases LVQ has better 
classification accuracy than SVM on LIF data set. However, 
the total numbers of available samples in our LIF dataset are 
small at least from a neural network perspective it is limited 
and fragmentary. To get better understanding and 
comparison with SVM result, sensitivity of LVQ should be 
evaluated in larger LIF dataset. 

V. CONCLUSION 
In this article recently developed prototype based method, 
Learning Vector Quantization is reviewed in the application 
to build a classifier that can distinguish between cancer and 
control patients from the Laser Induced Fluorescence data. It 
is worth noting that, LVQ is an adaptive machine learning 
approach and inherently regularizing by non-vanishing 
neighborhood cooperativeness, such that they are able to 
handle sparse, high dimensional and noisy data generated by 
LIF. However, the performance of LVQ is dependant on its 
various tuning parameter and feature selection criteria as 
seen from results. The generated classification LVQ model 
show good performance compared to other machine learning 
methods thereby demonstrate the ability of Laser Induced 
Fluorescence  technique  for  bladder  cancer  diagnosis. 

 

VI. FIGURES AND TABLES 
 

It should be noted that In figures 3 to 6,  X axis represent the 
variation in number of selected features from original 1024 
to reduced 200 data points selected from each spectrum and 
Y axis represents variation in the classification rate of LVQ 
in %. 

 
 

 
 
Fig. 1.  A-He-Cd laser, B-Dichroic Mirror, C-Wavelength 
Filter,   D-Iris Diaphragm, E-Focusing Lens,F-Optical 
Coupler, G-Probe,   H-Sample ,I-Collimating lens,   J-

Focusing lens, K-Spectrograph,     L-CCD, M-Computer 
 
 

 
Fig. 2. Typical LIF spectra obtained from Bladder tissue of 

A: Healthy volunteer, B: Bladder Cancer patient 
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Fig. 3. Block diagram of typical LVQ classifier 

 
Fig.  4.  Influence of feature selection criteria on the 

classification rate of LVQ. 
 
 
 
 

 
Fig.  5.  Influence of learning rate on the classification 

rate of LVQ. 
 
 
 
 

 
Fig. 6. Influence of selection of learning function during 

training on the classification rate of LVQ. 
 

 
 

 

 
Fig. 7. Influence of Number of hidden neurons on the 

classification rate of LVQ. 
 

 
 

TABLE I  
OPTIMAL  LVQ  PARAMETERS  FOR  LIF  DATA CLASSIFICATION 

 
               FEATURE       LEARNING  LEARNING   NUMBER OF 

  SELECTION      RATE   FUNCTION    HIDDEN NEURONS 
 

               WILCOXON       0.01       LVQ2             5 
 

 
 

TABLE II 
COMPARISON OF CLASSIFICATION ACCURACY OF LVQ WITH OTHER 

CLASSIFIERS 
    
 SVM1       SVM2         SVM3            MLP               LVQ 

     57.7%   57.9%   59.17%    58.9%       86.11% 

Where, SVM1 uses linear kernel, SVM2 uses quadratic      
kernel, SVM3 uses polynomial kernel. MLP is multilayer 

percepron. 
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