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Abstract�Understanding the molecular mechanism of aging
will allow human beings to develop rationale strategies for ther-
apeutic interventions in aging related diseases. The goal of this
study is to investigate the effect of a new protein, Klotho protein,
on FGF (�broblast growth factor) signaling. To identify the
signaling molecules, two emerging technologies, high-throughput
siRNA (small inference RNA) and reverse phase protein microar-
ray (RPPM) are utilized. To quantitatively analyze the patterns
of siRNA knockdowns, we present a Discriminative Feature
Pattern Identi�cation System (DFPIS) to identify contributing
nuclear hormone receptors. Computational analysis results using
HEK293 (human embryonic kidney) cells knocked down from
siRNAs and screened by protein microarray were presented.

I. INTRODUCTION

Suppression of aging is a far-reaching dream of human
beings. Aging is an extremely complex phenomenon in�u-
enced by various genetic and environmental factors. However,
recent studies have demonstrated that single gene mutations
can extend life span and delay aging processes in various
experimental animals [3], [5], [7], [8], [13], [15]. Our pio-
neering research has been focused on elucidating the function
of Klotho gene [9], [10]. Klotho gene was originally identi�ed
by our collaborator, Dr. Makoto Kuro-O, which is involved in
the suppression of aging in mammals [9] and is expressed
in limited tissues, notably in kidney and brain. It encodes a
single-pass transmembrane protein and functions as an aging
suppressor that extends life span when over-expressed and
accelerates the development of multiple aging-like disorders
when disrupted in mice.

Klotho is a multi-functional protein that regulates in-
sulin/IGF1 signaling, FGF (�broblast growth factor) signal-
ing and vitamin D metabolism, all of which are potentially
associated with its anti-aging properties. In this paper, we
will present the effect of Klotho on FGF signaling. As the
newest member of the FGF ligand gene family, FGF23 can
inhibit phosphate re-absorption in the kidney and lower serum
vitamin D. Many aging-like phenotypes in these mutant mice
are rescued by ablation of vitamin D activity [16], [17]. Klotho
is necessary for FGF23 to activate FGF signaling in various
types of cultured cells. To investigate the mechanism by which
Klotho and FGF23 regulate FGF signaling, protein microarray
screening will be utilized and a computational method will be

presented to discover the regulating molecule patterns of data
output from protein microarray.

II. RESEARCH METHODS

A. siRNA Knockdown for Validation and Global Screening
To identify the global structure of the FGF signaling net-

works in the regulation by Klotho and FGF23, we have devel-
oped a high throughput siRNA (small interfering RNA) library
screening system as an experimental platform. Currently, we
have a library consisting of three non-overlapping siRNAs
(siRNA A, siRNA B, and siRNA C) to 48 human steroid
hormone receptors. These siRNAs are chemically modi�ed
to overcome some of the limitations of standard siRNAs-
speci�cally, the �off target� effects, or non-speci�c interactions
of siRNAs with other, nontargeted RNAs. These reagents sold
by Invitrogen (Stealth RNAi Collection, Invitrogen) are blunt
ended, double stranded and modi�ed in a manner that prevents
sense strand activity (a modi�ed sense strand backbone that
cannot �t inside the RISC structure), eliminating sense-strand-
mediated off-target activity. The three non-overlapping anti-
sense strands are designed to the target RNAs using available
software and the sequences searched against the genome
database to weed out binding to other gene targets.

B. Reverse Phase Protein Microarray (RPPM)
To establish high-throughput screening of siRNA knock-

down, we have developed a Reverse-Phase Protein Microarray
(RPPM) technology. Different from matured gene microarray
technology, protein microarray is a new emerging, quantitative
assay technology. In contrast to other protein arrays that
immobilize the probe, RPPM immobilizes the whole repertoire
of sample proteins. It allows numerous samples to be analyzed
in parallel using only minute (nanoliter) amounts of sample
for making quantitative measurements to pro�le changes in
activity of different candidate signaling molecules in cell lines
knockdown and not-knockdown [6]. The RPPM technology
was especially designed for pro�ling changes in protein activ-
ity (e.g. phosphorylation, cleavage activation, etc.) rather than
just protein expression levels.

For the �nal output of high-throughput RPPM data, to
quantitatively analyze the patterns of siRNA knockdown to



nuclear receptors, visual inspections are not always obvious
or accurate. We present a discriminative feature patterns iden-
ti�cation system called DFPIS. The framework starts with a
feature selection performed by building a connection between
pattern frequency (pattern support value) and discriminative
measures. Once redundant features are removed, feature pat-
terns identi�cation algorithm is performed. The interaction
patterns of the selected genes will be discovered by Strong
Jumping Emerging Patterns (SJEPs). Finally, feature pattern
annotation assigns a set of characteristics to feature pattern and
thus obtains relevant information for the interpretation of ex-
perimental results. In the following sections, we will introduce
the background knowledge and our proposed methodology.

III. PROBLEM FORMULATION

For each numerical attribute from RPPM data output,
its value range is discretized into two or more intervals.
Each (attribute, continuous-interval) pair is called an item.
(geneM26383, [59.8, +∞)) is an example of items. Let I be
a set of all items. Then a set X of items is called an itemset
which is de�ned as a subset of I . X(fi) is de�ned as an
itemset of the feature fi which contains all continuous-interval
items of the attribute fi. For example, the discretization
method partitions genes each into two disjoint intervals.
X(M26383)={(geneM26383, (-∞, 59.8)),(geneM26383, [59.8,
+∞))}. spD(X) is the support of an itemset X in a data set
D calculated by countD(X)/|D|, where countD(X) is the
number of samples in D containing X . Suppose D contains
two different classes: D1 and D2. For an item i ∈ I , there is
a single itemset {i} ⊂ I .

De�nition 1. (Pattern Signi�cance) Given ξ > 0 as a
minimum support threshold, the signi�cance of an item {i},
denoted as S({i}), is de�ned as

S({i}) =





0 if spD1({i}) < ξ ∧
spD2({i}) < ξ,

spD2({i}) if spD1({i}) = 0 ∧
spD2({i}) ≥ ξ,

spD1({i}) if spD1({i}) ≥ ξ ∧
spD2({i}) = 0,

|spD1({i})− spD2({i})| otherwise.

The larger the signi�cance of an item, the sharper
the discriminating power associated with the item. If
S({i}) = spD1({i}) or S({i}) = spD2({i}), we call an item
{i} as an SJEP (Strong Jumping Emerging Pattern) which
is the shortest JEPs satisfying the support constraint. Let
J = {j1, j2, ..., jp} be the set of all items appearing in X(fi).

De�nition 2. (Feature Signi�cance) A signi�cance measure
S is a function mapping a feature f ∈ F to a real value
such that S(f) is a degree of interestingness of the feature f .
S(f) is de�ned as S(f) =

∑p
i=1 S(J(i))/|J |S(J)6=0.

 
Initialization 

   Feature set: F = {f1, f2, …, fr} 

Iteration 

   Discretize training samples 

   Repeat until F=[ ] 

      - Compute relative feature significance Si(⋅|fi) of fi using Def. 1-3 

      - Find the feature subset Subi with the highest significance score Si 

      - Train SVM with the training samples with features contained in Subi 

      - Compute the weight vector w using Eq. (5) 

      - Compute the weight Wi using Eq. (7) 

   Compute the average of feature weights obtained from Sub1, … Subr 

   Find the feature subset Subfinal with the highest weights 

   Backward feature selection with features in Subfinal 

      - Classify the test samples with selected features 

   Analysis of measurements 

  Fig. 1. A feature selection method

Example 1. S(geneM26383)=(S((geneM26383, (-∞,
59.8)))+S((geneM26383, [59.8, +∞))))/2.

We de�ne the signi�cance of the feature f as the combined
signi�cance of items in X(f). Given signi�cance measures,
we can de�ne the relative signi�cance between two features.
Let J = {j1, j2, ..., jp} be the set of all items appearing
in X(fi) and K = {k1, k2, ..., kq} be the set of all items
appearing in X(fj).

De�nition 3. (Relative Feature Signi�cance) Given the
signi�cance measure S, the relative signi�cance between two
features fi and fj is de�ned as

S(fj |fi) =
[∑p

i=1

∑q
j=1 S(K(j)|J(i))]

/
(|K|+ |J |),

=
[∑p

i=1

∑q
j=1 S(K(j))−R(J(i),K(j))]

/

(|K|+ |J |)
where S(J(i), S(K(j)) > 0 and R(J(i),K(j)) denotes the
redundancy between two patterns J(i) and K(j).

IV. A DISCRIMINATIVE FEATURE PATTERN
IDENTIFICATION SYSTEM (DFPIS)

Feature patterns (combination of features) identi�cation
techniques could be used to capture more underlying semantics
than single feature. However, it is very hard to �nd meaningful
patterns in large datasets like microarray data because of the
huge search space. Furthermore, infrequent patterns are often
irrelevant or do not improve the accuracy of the classi�cation.
To tackle these problems, we designed a discriminative feature
patterns identi�cation system named DFPIS.

Our framework starts with a feature selection performed by
building a connection between pattern frequency (pattern sup-
port value) and discriminative measures. This method de�nes



a feature subset relevant to each feature which includes the
d lowest correlated features of a given feature, based on a
relative feature signi�cance measure. With the low correlated
feature subset, we run the linear SVMs algorithm where 2

3
samples are utilized for training and the remaining 1

3 for
testing. Then, we compute the weight for each feature based
on the idea proposed in [14].

Zk =





|wk|S(fk)
d+1∑
j=1

|wj |S(fj)
× β × δ, for γ ≤ β,

(
1− |wk|S(fk)

d+1∑
j=1

|wj |S(fj)

)
× (γ − β)× δ, for γ > β,

(1)
where

δ =
{

1, for γ ≤ β (2)
−1, for γ > β

and β is the accuracy using testing samples, γ is a prede-
�ned threshold and |wk| is the absolute SVM weight. Each
|wk|S(fk) is normalized by dividing the summed |wk|S(fk)
value of all the features in the subset. S(fk) is the feature
signi�cance using Def 2. To prevent the feature weight from
being multiplied by zero, a very small value is summed to |wk|
and S(fk). In our approach, S(fk) is additionally multiplied
on the equation from Oh et al. [14] because this feature
signi�cance is an important measure to be able to show if
the feature is globally discriminant, not locally in the feature
subset. Finally, backward selection (elimination) started with a
certain number of features selected by the weights of features.
The process stops when decreasing the size of current best
subset leads to a lower prediction rate. This algorithm is
summarized in Fig. 1.

Once redundant features are removed, feature patterns iden-
ti�cation algorithm is performed. To ef�ciently mine SJEPs
(Strong Jumping Emerging Patterns), we employed SJEPs
mining algorithm based on the contrast pattern tree (CP-tree)
[4]. The CP-tree is constructed by using the new ordering
of each transaction based on the feature weight from Eq. 1,
while the original CP-tree reorders transactions based on the
feature support value. The order of CP-tree is very important to
extract SJEPs. However, there are some critical issues when
we use only the feature support value for reordering. First,
there are many cases that the support values of features are
equivalent. Second, feature support value only is not enough
to rank features. Therefore, reordering based on the feature
weight has the strong advantage to ef�ciently extract SJEPs.
Because every training instance is sorted by its weight when
inserting into the CP-tree, items with high weight, which are
more likely to appear in an SJEP, are closer to the root. Using
the prede�ned order, we can produce the complete set of paths
(item sets) systematically through depth-�rst searches of the
CP-tree. We start from the root to search the CP-tree depth-
�rst for SJEPs. The item set, which is initially empty, will

grow one item at a time. After completing the search of the
CP-tree, we select only those minimal patterns by �ltering out
those that are supersets of others. The remaining minimal ones
are SJEPs since they satisfy the minimum support threshold.

The �nal step is to provide feature pattern annotation.
Feature pattern annotation is important to assign a set of
characteristics to feature pattern and thus obtain relevant infor-
mation for the interpretation of experimental results. Our goal
is to generate annotations in order to provide complete and
homogeneous feature pattern characterization such as feature
signi�cance, relative feature signi�cance, feature prediction
ability (classi�cation accuracy) feature pattern signi�cance,
and so on, to researchers. Fig. 2 shows the format of our
feature pattern annotation.

V. EXPERIMENTS

To test the performance of the proposed DFPIS algorithm,
we used quantum dot protein microarray data with linear SVM
(soft margin C=1). LOOCV (leave-one-out cross validation)
was carried out because of the small number of samples. For
comparison, we used four feature selection algorithms, i.e.,
our proposed feature selection, SVM-RFE, Chi-squared, and
information gain feature selection.

The data sets of HEK293 (Human Embryonic Kidney) cells
were generated using the reverse-phase protein microarray
platform as described in our previous work [6], [18]. Brie�y,
cell lysates were arrayed on the slides using a printing robot.
In all cases, samples were printed in triplicate. Each slide was
probed with anti-antibodies for six antibodies, pERK, SOD2,
CuSOD1, mGSS, mHPS60-chaperonin, and Klotho. For back-
ground controls, identical slides were incubated without the
primary antibody. Finally, a pegylated, streptavidin-conjugated
Quantum Dot 655-Sav (Quantum Dot Corp.) was used as
a �uorescent detector. The intensities of all antibodies were
normalized relative to those of Actin to correct the protein
loads between the spots and the mean values of triplicate
samples were used. The library screened in this data was the
Nuclear Hormone Receptor (NHR) library (48 genes) from
Invitrogen. Tab. I shows our data sets used in this experiment.
This NHR library had 48 receptors with three siRNAs for each
one, namely A, B and C (Invitrogen's naming convention). For
each receptor, A,B and C represent three different siRNAs for
the same gene differing in the location of the target. Every time
a library was spotted, all three sets were spotted. The classes
of these datasets were determined by whether FGF (Fibroblast
growth factor-23) knockdowns (-FGF) or not (+FGF).

TABLE I
DATA DESCRIPTION

Dataset # of classes # of samples # of features Description
Data1 2 10 (5/5) 48 5 antibodies on siRNA A set
Data2 2 10 (5/5) 48 5 antibodies on siRNA B set
Data3 2 10 (5/5) 48 5 antibodies on siRNA C set
Data4 2 30 (15/15) 48 5 antibodies on each siRNA A, B, and C set
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2) Data description : # of samples, # of features
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4) Feature pattern identification : # of identified SJEPs, accuracy on SJEP classifiers
5) Feature description

[SJEP Information]
1) Class name
2) SJEP
3) Support value
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(c)

Fig. 2. Feature Pattern Annotation

A. Computational analysis: feature selection
We accomplished the accuracy of 100% using LOOCV

evaluation as shown in Tab. II with a few features out of 48
chosen from our DFPIS-FS (feature selection). For this small
sample dataset, even a single siRNA (siRNA B) was con�dent
enough for the decision making (Data2).

TABLE II
BEST ACCURACY

Data # of samples # of features accuracy sensitivity specitivity
SiRNA_A 10 3 100 100 100
SiRNA_B 10 1 100 100 100
SiRNA_C 10 12 100 100 100
SiRNA_All 30 7 100 100 100

To evaluate the performance of our algorithm, we carried
out comparison experiments with several commonly used
feature ranking algorithms, i.e. ChiSquare, Information Gain
and SVM-RFE. Fig. 3(a) shows the experiment results with
the corresponding accuracy on Data4 for different algorithms.
Note that top ranked �ve features of DFPIS-FS outperformed.
We also found the similar patterns on other data sets. Fig. 3
(b) shows the corresponding weights of features on all data
sets. Note that feature 37 (VDR) had a high weight all the
time. Also, we can observe the difference of the top 10 ranked

feature set on different data sets in Tab. III. However, as
observed from the frequency of occurrence, we can see three
features, 32 (RXRA), 37 (VDR) and 40 (NR4A3) with higher
frequency compared to others. This may re�ect that these
biomarkers may be used for the decision making regardless
of kinds of siRNA or antibodies.

TABLE III
TOP 10 RANKED FEATURE LIST

Rank Data 1 Data 2 Data 3 Data 4
1 40 25 18 37
2 39 15 3 47
3 22 20 46 40
4 38 24 47 3
5 43 40 37 27
6 35 2 42 2
7 41 37 11 46
8 37 44 6 43
9 36 11 32 32
10 32 1 44 38

B. Computational analysis: feature pattern identi�cation
To explain the results of DFPIS-FPI (feature pattern identi-

�cation), we explain one of our results, the feature pattern
annotation using top 5 ranked features of Data2 in Fig.
4. DFPIS-FPI generated 10 SJEPs using those �ve features
selected from DFPIS-FS where minimum support threshold
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Fig. 3. Comparisons Study: (a) Accuracy on Data4 by ChiSquare, InfoGain, SVM-RFE, and DFPIS-FS when different top ranking SiRNAs are selected.
For DFPIS-FS, feature weights were used instead of ranks by backward feature selection. (b) Feature weights of DFPIS-FS.

is 0.25. When looking at the results of DFPIS-FPA (feature
pattern annotation), we can see obviously different patterns
between two classes. When FGF knockdowns, expression level
of all features was decreased. For feature 25, interval itself was
a SJEP for each class and these two SJEPs were con�dent
enough for the decision making. As seen in Fig 4., relative
feature signi�cance values which are 0.74, 0.39, 0.39 and 0.53
show the signi�cance of the corresponding feature when other
feature is already given. For example, relative feature signi�-
cance of feature 15 when feature 25 is already determined for
decision making is 0.75. Other values are relatively lower than
this because of redundancy of patterns. Overall, DFPIS-FPA
generated annotations to provide homogeneous characteristics
for the interpretation of experimental results.
C. Biological observations

We investigated whether expression level of identi�ed fea-
tures are discriminative as FGF knockdowns. It is interesting
to notice that there are two observations such as the difference
of expression level of feature 22 (RORC) and feature 32
(RXRA) in Data1 and the difference of expression level of
CuSOD1 antibody on all data sets. Unusually, the expression
level of feature 22 (RORC) went up as FGF knockdowns in
Data1. Feature 32 (RXRA) is over expressed when this feature
cooperates with CuSOD1 antibody. Overall, when identi�ed
features respond with CuSOD1 antibody, there were relatively
large difference of expression level.

VI. CONCLUSION

This paper presented exploratory work on identifying signal-
ing molecules for aging mechanism. The effect of a new pro-
tein, Klotho, on FGF signaling was investigated using siRNA
knockdown and reverse phase protein microarray screening.
The proposed Discriminative Feature Pattern Identi�cation
System (DFPIS) allows us to recognize the contributing genes
in the FGF pathway and take into consideration of gene
interactions. For feature selection, proteins contributing most

to knockdown are identi�ed. The interaction patterns of those
selected genes are discovered by employing SJEP pattern
mining based on a contrast pattern-tree. The last step of feature
pattern annotation provides complete pattern characterization
such as single gene signi�cance, relative pair-wise gene sig-
ni�cance, and pattern signi�cance.

For future work, we plan to use additional kinase library
(636 human kinases) for additional cell lines. With more
sample collection, the whole framework will be further tes-
ti�ed and improved. We will also establish a western blotting
procedure to validate results from the siRNA studies.
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