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Abstract

Simulation of cardiac excitation is often a trade-off be-

tween accuracy and speed. A promising minimal, time-

efficient cell model with four state variables has recently

been presented together with parametrizations for ventric-

ular cell behaviour. In this work, we adapt the model pa-

rameters to reproduce atrial excitation properties as given

by the Courtemanche model. The action potential shape

is considered as well as the restitution of action potential

duration and conduction velocity. Simulation times in a

single cell and a tissue patch are compared between the

two models. We further present the simulation of a sinus

beat on the atria in a realistic 3D geometry using the fitted

minimal model in a monodomain simulation.

1. Introduction

When simulating cardiac excitation, one often has to

compromise between model accuracy and speed. Detailed

but time-consuming ionic cell models reflect reality quite

accurately, whereas alternative approaches such as a cellu-

lar automaton are faster but suffer from discretization ef-

fects. A minimal model (MM) with four state variables has

recently been presented [1]. While still using Hodgkin-

Huxley type equations, it performs much better and could

be an alternative to such automaton systems. Especially for

clinical applications that require patient-specific parameter

adaptation, high computational speed is crucial.

The MM calculates the current density of three major

currents: a fast inward current Jfi (corresponding to Na+),

a slow outward current Jso (K+) and a slow inward current

Jsi (Ca2+). Current densities are determined by only four

state variables u, v, w and s, where u is rescaled to the

transmembrane voltage (TMV). A set of 28 parameters,

mainly time constants and threshold voltages, controls the

time evolution of the state variables and thus the shape of

the action potential (AP) and other properties such as for

example action potential duration (APD) restitution.

While parameter sets reproducing ventricular APs are

supplied in [1], there is no setup for atrial excitation yet.

In this contribution, we have therefore fitted the model pa-

rameters such that it can reproduce atrial APs as generated

by the well-known Courtemanche (CM) model [2]. Re-

production of APD as well as conduction velocity (CV)

restitution are considered in the adaptation process.

2. Methods

The minimal model was implemented into a C++ simu-

lation framework [3]. For optimization, functions depend-

ing on the u state variable were tabularized when possible.

The implementation was verified against the supplied Mat-

Lab example code [1] and showed the correct output for all

ventricular parameter sets. The CM model was also avail-

able in the framework in a comparably optimized form.

It has to be noted that APs of the CM model differ

significantly between simulations in single cells and in

tissue patches especially regarding upstroke peak height

and APD. For the minimal model, this difference is much

smaller. Therefore, reference curves of the CM model

at different pacing frequencies were generated using a

monodomain finite-difference (FD) simulation in a one-

dimensional (1D) patch. It consisted of 200 voxels in

length with a voxel size of 0.33 mm. The cell was driven

at a basic cycle length (BCL) of 1000 ms for 20 beats after

which a transition to a lower BCL (higher frequency) was

performed. After another 20 beats, the BCL was decreased

again down to a minimum of 260 ms that could be stimu-

lated without alternans effects to appear. The last beat at

each BCL then constituted the reference curve.

APD reference data was generated from these curves.

As APD90 is determined by both the upstroke peak height

and the falling phase of the AP it is not an optimal crite-

rion for adjusting the AP tail. We therefore selected the

point at which the AP reaches -73 mV as the property to

be adjusted (from now on referred to as APD−73 mV). For

a BCL of 1000 ms this only differs to APD90 by a few ms.

Reference data for the conduction velocity were created
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uo uu θv θw θ−v θo τ−

v1 τ−

v2 τ+
v τ−

w1 τ−

w2 k−

w u−

w τ+
w

0 1.02 0.302 0.33 0.172 0.06 65.6 1150 0.95 170.8 112.4 135 0.0744 217

τfi τo1 τo2 τso1 τso2 kso uso τs1 τs2 ks us τsi τw∞ w∗

∞

0.0678 100 64.87 53.54 8.03 1.748 0.644 5.406 52.91 1.008 0.814 6.978 4.97 1

Table 1. Resulting parameter set for reproducing atrial excitation properties with the minimal model.

in the 1D patch described above. First, the tissue conduc-

tivity was adjusted to a CV of 700 mm/s at 1 Hz. Next,

pacing was started at a BCL of 1000 ms, with the BCL sub-

sequently being decreased down to 260 ms after 20 beats

each. The CV was calculated from the signal delay be-

tween two points at 33 mm distance, centered in the patch.

With the reference data ready, the parameters of the MM

are adjusted subsequently. A first rough fit of the AP shape

to the reference curve at a BCL of 1000 ms is performed

by manually adjusting θw and θo and then using the ex-

ample code from [1]. This invokes a sequential quadratic

programming (SQP) method in Matlab. However, the sup-

plied code only fits the initial beat which is not in steady-

state. For this beat a BCL cannot be defined either.

The outcome is therefore fed into a Particle Swarm Al-

gorithm (PSA) as a starting point for further optimiza-

tion in the C++ framework. The PSA search principle is

based on the flocking behaviour of for example birds or

fish schools [4, 5]. Movement of a particle in a parameter

direction of the search space is influenced by its current ve-

locity (with an inertia weighting factor), the best position

it has found so far itself (cognitive factor) and the overall

best position found by any of the particles (social factor).

For multi-parameter optimization problems like the

present one, a randomized inertia weight factor together

with a decreasing cognitive factor and an increasing so-

cial factor under the optimization course showed the best

results in our tests. A limitation of this setup is that the

number of iteration steps must be defined in the beginning

in order to adjust the cognitive and social factors. But even

with that limitation, it appears to be a favourable method

for the optimization of such a multi-dimensional problem

that can be assumed to have many local minima.

A first fit is performed for a BCL of 1000 ms in which

the fifth beat of the MM in a single-cell simulation is com-

pared to the reference curve. Due to its relative simplicity,

all beat-to-beat variations should be negligible then. The

resulting parameter set is further adjusted manually with

respect to peak height. uu is tuned until the maximum Vm

is between 2.0 and 2.5 mV, according to the reference value

of 2.4 mV. The SQP algorithm is further invoked again for

a slight adjustment of the spike and dome morphology.

With a good approximation of the AP shape, the PSA

fitted a defined set of parameters to match the APD resti-

tution curve to its reference values. Modified were τ−

w1,

τ−

w2, u−

w , k−

w and w∗

∞
as these are the main contributors to

the recovery of the Ca2+ gating variable w. Additionally,

a small adjustment of τsi was allowed.

Finally, the conduction velocity was fitted by adjusting

τ−

v1, τfi, and uq. The velocity of the MM was calculated

in an equal simulation setup as the CM reference data. As

for each parameter set to be tested a whole patch simula-

tion had to be started, this was most time consuming per

parameter evaluation. As already the second beat at each

BCL gave a good approximation, its CV was chosen to be

compared to the reference for efficiency reasons.

It should be noted that it is most effective to first adjust

the APD parameters and then continue with the CV tuning.

The influence of the APD on CV restitution is rather large.

Reactivation of the Na+ gates at the rate τ−

v1 is voltage trig-

gered. Changes in APD result in delayed or respectively

advanced reactivation and thus a change in the upstroke

velocity of the next beat for a given BCL. On the other

hand, modification of the CV parameters does not signifi-

cantly shift the time at which the upstroke peak is reached

on the time scale of a whole AP. Thus, APD is affected

much less by adjusting the CV parameters.

A finite element (FE) monodomain (MD) simulation in

a tissue patch of 300× 300× 5 voxels with a resolution of

0.33 mm provided a performance test environment in tis-

sue. With a built-in timer, the computational effort for the

cell model properties on one hand and the MD excitation
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Figure 1. AP shape of the fitted minimal model com-

pared to reference data from CM model. BCLs of 1000 ms,

500 ms and 300 ms are shown. The basic shape is well re-

produced for all three heart frequencies.
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Figure 2. Restitution curves of the fitted MM compared

to the CM reference. For APDs, the time delays are given

between the AP peak and the point at which -73 mV are

reached. While single-cell simulations provided the data

for the optimization, the APDs shown here were generated

in a tissue patch. Despite that, they are in good agreement

with the reference data. Further, the CV restitution curve

matches almost perfectly down to 260 ms.

propagation on the other hand could be separated.

While integration time steps of 20 µs were used in all

simulations described so far both for the cell models and

the monodomain equation, the MM should tolerate larger

steps due to its simplicity. We therefore experimented with

increased intervals of 50 µs to see if the resulting change

in CV is well below 5 % as described in [1].

Finally, an isotropic FE monodomain simulation of a si-

nus beat is performed in a realistic atrial model based on

the Visible Female (VF) dataset on two 2,8 GHz Quad-

Core Intel Xeon CPUs. All cells are pre-paced in single-

cell simulations at a frequency of 1 Hz for 10 beats (CM)

or 5 beats (MM) respectively. The simulation is performed

for integration time steps of both 20 and 50 µs.

3. Results

The resulting parameter set is shown in table 1. The

rescaling from u to Vm in mV is performed as Vm = 85.7 ·

u − 80.9. This corresponds to a resting membrane voltage

adjusted to -80.9 mV as observed in the CM model. Fig. 1

shows the good agreement between the AP curves of the

minimal model and the Courtemanche reference.

A quantitative analysis of the APD restitution is shown

in fig. 2. The general shape matches well with only slight

deviations at BCLs around 300 and 700 ms. It must be em-

phasized that the demonstrated APDs are calculated in a

real tissue patch while the optimization is performed using

single-cell simulations. Finally, the dependence of con-

duction velocity on BCL is calculated as depicted in fig. 2.

It agrees almost perfectly with the reference data.

A first performance test is done in a single-cell simula-

tion where the cell is paced at a rate of 1 Hz for 10,000 s.

On one core of an Intel Core 2 Duo at 2,4 GHz, the CM

model calculated for 576 s while the MM with the parame-

ters from table 1 needed only 58 s. This is a time reduction

of quite exactly 90 % and demonstrates its efficiency.

On both cores of the same machine we performed a

speed test in the previously described tissue patch of 300×

300 × 5 voxels. For simulating 1 s of excitation, the CM

model required 164 s while the minimal model finished af-

ter 53 s. With a fix-cost amount for the excitation propa-

gation between 30 and 35 s as well as time for model ini-

tialization etc., the remaining calculation time for the cell

model was measured to be 111 s for the CM model and

12 s for the minimal model. Again, this is an increase in

cell-model calculation speed of more than 9, resulting in

an overall speed factor of over 3.

Simulation time for 1 s of excitation in the whole atrium

using the CM model was around 18.7 hours. The results

are shown in fig. 3. However, the minimal model with an

integration time step of 20 µs could not outperform this.

With an overall simulation time of 17.5 h the speed was

comparable to the Courtemanche simulation.

When increasing the integration time-steps for the MM

to 50 µs, CV decreased by only around 2 % from 702 to

688 mm/s. This implies the stability of the solution. With

tissue conductivity readjusted to a CV of 700 mm/s, the

simulation demonstrated in fig. 3 is performed in 7.8 h

which corresponds to a speed factor around 2.2.

4. Discussion and conclusions

We have demonstrated the implementation of a mini-

mal model and adaptation of the parameter set such that

it reproduces atrial excitation properties as given by the

Courtemanche model. Despite its simplicity, the simula-

tions with the MM show good agreement with the refer-

ence data, both for the shape of the AP at different BCLs

as well as for the restitution of APD and CV.

The simulated heart beat shows no major differences be-

tween the two models (fig.3). The excitation conduction is

almost identical. This underlines again the good adaptation

of the MM. Only the slightly broadened peak in the MM is

manifested spatially in a somewhat elevated TMV behind

the depolarization front. The higher integration time steps

do not result in increased discretization effects.

Limitations so far are that other properties such as the

behaviour under stimulation during the relative refractory

period were not considered yet. However, the APD and

CV restitution curves should already approximate the re-

activation properties sufficiently well in a first step. Apart

from that, iterative repetitions of the procedure could fur-

ther improve the quality of smaller details of the AP shape

(like the peak width) or the APD restitution curve.

63



Figure 3. Simulation of a sinus beat on the Visible Female atrial dataset at t = 30, 60 and 90 ms. The transmembrane

voltage (TMV) distribution generated with the MM (bottom row) is in good agreement with the CM reference (top row).

We have observed a very good performance of the MM

in single-cell and patch simulations. In a large-scale simu-

lation in contrast, the speed-up compared to the CM model

vanished for equal iteration steps. However, this does not

seem to be a principal restriction of the MM. On one hand,

as we found the simulation time being dominated by the

MD equation, there is certainly room for improvement. On

the other hand, with further adjustments we consider a sig-

nificant speed-up on the cell model side feasible as well.

Apart from that, a first measurable speed factor of more

than two is already achieved by the possibility to increase

the integration time.

Although the demonstrated properties are well-repro-

duced, the minimal model cannot account for all the com-

plex behaviour of the full Courtemanche model. While this

can be considered a drawback on one hand, it opens up

new possibilities on the other hand. Selected features such

as APD and CV restitution can be adjusted by a small, de-

fined set of parameters, allowing for controlled variation

of these properties. In addition to the speed-up in com-

putation time, this might be an important property when

approaching the clinical use of electrophysiological sim-

ulations. Firstly, there are still differences to be expected

between the simulation in a cell model even of great com-

plexity and a real person’s heart. Secondly, clinical use

implies the presence of pathologies varying from patient

to patient. Thus, model adaptation to patient-specific mea-

surement data is of great importance. A simple, control-

lable model strongly facilitates such adjustments.

With the presented parameter set, we provide a base for

applications of the minimal model regarding atrial physiol-

ogy and especially pathophysiology, like the study of atrial

arrhythmia such as atrial flutter or atrial fibrillation.
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