
Combined Analysis of Time and Frequency Series Regularity

Applied to the Study of Atrial Fibrillation
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Abstract

Atrial Fibrillation (AF) is the most common arrhyth-

mia encountered in the clinical practice. In this work,

a new method based on electrocardiogram (ECG) signal

processing is carried out in order to distinguish between

AF episodes that will terminate immediately and those

that will sustain. This new method is based on a com-

bined analysis of the atrial activity (AA) series regular-

ity in both time and frequency domains. The regularity

is measured by using the non-linear regularity estimator

Sample Entropy (SampEn). The SampEn of these se-

ries of spectral parameters and the SampEn of the AA in

the time-domain are studied jointly in a discriminant anal-

ysis. In global percentages, forty eight of fifty recordings

(96%) were classified correctly by the discriminant analy-

sis, which provided an improvement of 6% with respect to

the univariate analysis of SampEn.

1. Introduction

Atrial Fibrillation (AF) is the most common arrhythmia

encountered at advanced age. The prevalence of AF re-

mains lower than 1% among the general population, but it

increases considerably from sixty years old [1]. The spon-

taneously terminating AF, frequently refereed as paroxys-

mal AF (PAF), is often the precursor to sustained AF [2].

Given that sustained AF increases the likelihood of suf-

fering myocardial infarctions and strokes [1], its accurate

recognition by means of noninvasive techniques is of great

interest to the regular clinical practice. The prediction of

PAF mantainance can help to choose the appropriate inter-

vention that may terminate the arrythmia. Otherwise, the

prediction of the spontaneous termination of PAF episodes

could avoid unnecessay therapies and their associated clin-

ical costs [3].

In this work, an analysis the of AA spectral parame-

ters organization is carried out with the aim to classify be-

tween terminating and non-terminating AF episodes. The

analysis of these parameters is made in terms of math-

ematical regularity of their series. The organization is

measured by using the entropy estimator Sample Entropy

(SampEn) [4, 5]. Entropy estimators have already been

used in the characterization of biomedical signals different

from ECG [6]. The ECG recordings analysis is completed

in five main steps: extraction of the AA, computation of

the spectrogram, curve fitting, construction of spectral pa-

rameter series, and SampEn computation. The SampEn

values are then studied by using univariate and discrimi-

nant analyses.

2. Materials

For the present work we have used the database of Phy-

sioNet/Computers in Cardiology Challenge 2004. The

database is divided into a learning set and a test set. Each

record in the database is a one minute segment of AF that

has been extracted from a long term ECG recording. The

learning set contains 10 segments of non-terminating AF

(group N) and 10 segments of AF that terminates within a

second after the end of the record (group T). The test set

contains 30 records, approximately half of them belonging

to group N, and the rest to group T.

Butterworth filtering of eight order and pass-band from

1 to 50 Hz is applied to each recording. The original sam-

pling rate (fs) of the Holter system was 128 samples per

second, but the ECG recordings were interpolated by a fac-

tor of 8 so that a fs equal to 1024 resulted. The resultant

time-domain higher resolution allowed us to obtain a bet-

ter cancellation of the QRS complex and a higher length of

parameter sequences.

3. Methods

In order to use the ECG as a suitable tool for the analy-

sis of AF, we need to separate the atrial activity from other

cardioelectric signals. The extraction of the AA during

AF requires nonlinear signal processing since spectra of

atrial and ventricular activities (VA) overlap and, in con-

sequence, they cannot be separated by simple linear fil-

tering [7]. Given that the challenge database consisted of
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two-lead ECG recordings, we opted to use ABS to sepa-

rate the AA from the rest of the cardioelectric signal as a

previous step to the rest of the analysis [8, 7].

After the obtention of the AA signal, its spectrogram [9]

is computed using Hamming windows of 1024 samples in

length and 75% overlap. In order to facilitate the spec-

tral parameters extraction, cubic spline fitting is applied to

each of the Fourier transforms that constitute the spectro-

gram. The cubic spline fitting curve from the original data

is interpolated so that the resulting frequency increment

is 0.01 Hz. Finally, the SampEn of all aforementioned

series is obtained as an estimation of their mathematical

regularity.

The size of series is around 600 elements, what is large

enough since the SampEn is meaningfully applied to

more than 100 data points [4]. The SampEn values are

evaluated by the t-test and by discriminant analysis, which

results are exposed in section 4. The objective pursued

by the discriminant analysis is to know if there exists any

combination of the aforementioned parameters which im-

proves the decision reliability. The discriminant analysis

is carried out in two stages. First, the discriminant func-

tion is obtained by considering the learning data set. Then

this discriminant line is applied to the test set in order to

validate the results.

The first spectral parameter we consider is the main peak

frequency (fp1), which is known to be highly relevant in

the characterization of AF [10]. The second parameter is

the main peak magnitude, A1. The third and fourth param-

eters are the second largest frequency peak (fp2) and its re-

lated peak magnitude, A2. The fifth parameter is the Spec-

tral Concentration (SC). The SC can be defined as [11]:

SC =

1.17fp1∑

f=0.82fp1

PAA(f)

0.5fs∑

f=0

PAA(f)

(1)

where PAA is the power spectral density of the AA signal,

f is the frequencies vector, fs is the sampling rate (1024
Hz), and fp1 is the main peak frequency of the AA. Other

two parameters related to the width of the spectrum main

lobe have been used: the 3-dB width of the peak, w3dB,

and the power in the 3-dB band, pb3dB. This two last

parameters have been used in [12] to characterize AF. Two

derived parameters, ∆fp and Ā2 are referred to the spectral

shape of AA. Similar parameters are used in [13]. The first

derived parameter is the normalized distance between fp1

and fp2, which is expressed as:

∆fp =
(fp1 − fp2)

fp1

(2)

The second derived parameters is the normalized ampli-

tude of the second largest peak, which is defined as:

Ā2 =
A2

A1

(3)

The deviation of the main and second peak magnitudes

from their respective mean values are also computed as a

dispersion measurement:

d1 = fp1 − E(fp1) (4)

d2 = fp2 − E(fp2) (5)

where E(·) represents the average value over the set of

periodogram. Finally, the Median Frequency (MF) is ob-

tained as the center of mass of the spectrum:

MF =

0.5fs∑

f=0

|FTAA(f)| · f

0.5fs∑

f=0

f

(6)

where FTAA is the Fourier Transform of the AA. This pa-

rameter was previously used in other works to characterize

the ventricular fibrillation [14].

4. Results

The results of the t-test applied to the SampEn of the

numerical series for the learning set are summarized in

Figure 1. These results reveal that it is possible to dis-

tinguish between terminating and non-terminating AF in

six of the twelve parameters, considering a parameter to

be relevant when its bilateral significance is less than 0.05.

These six relevant parameters are fp1, fp2, ∆fp, A1, d1

and SC, which bilateral significances are, respectively,

0.001, 0.005, 0.003, 0.004, 0.015, and 0.001. The mean

SampEn in type N recordings is higher than in type T

recordings for all these relevant parameters. An optimal

decision threshold of 0.1173 has been chosen for fp1. By

considering this value of threshold, 19 out of 20 learning

recordings have been classified correctly. Taking the same

threshold for the test set, 26 out of 30 recordings have

been classified correctly. This resulted in a percentage of

recordings properly classified equal to 95% for the learn-

ing set and equal to 86.67% for the test set. The results

obtained by this classification are presented in Figure 2 for

every recording.

The previous univariate analysis revealed that the

SampEn of the spectral parameters fp1, fp2, ∆fp, A1,

d1 and SC have a bilateral significance lower than 0.05

and, in consequence, all of them are suitable to be used
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Figure 1. Results of the t-test for the SampEn of all the

spectral parameters. a) Mean SampEn for groups N and

T, b) SampEn bilateral significance between groups.

in discriminant analysis, which is the next step that has

been taken. Furthermore, the SampEn of the AA was

also computed and a mean difference of 0.25081, with the

greatest mean value for the N group, and a bilateral signif-

icance equal to 0.004 were figured out by the t-test. This

fact suggested to include this parameter in the discriminant

analysis along with the spectral parameters. This made

possible, in addition, to combine the information obtained

from both time and frequency domains.

The obtained discriminant function is a plane given by

the equation x3 = 0.0355 · x1 + 1.6 · x2 + 0.4653, where

x1, x2 and x3 represent the SampEn of fp1, ∆fp and

the AA, respectively. The standardized canonical coeffi-

cients of the discriminant function are presented in Table

1. These coefficients are ordered in the table by their im-

portance in the discriminant function. A small value of

Wilk’s lambda test [15] significance (p < 0.001) was ob-

tained, which indicates the great discriminatory ability of

the function. All of the cases used to create the model, i.e.

the learning set, were correctly classified. Regarding the

test set, 15 out of 16 type N cases and 13 out of 14 type

T cases were correctly classified (see Table 2). Expressing

this results in percentages, 100 % cases of the learning set

and 93.75 % cases of the test set were classified properly.

Figure 2. Classification of type N and T episodes using a

threshold value for the SampEn of fp1 equal to 0.1173.

Canonical coefficient

SampEn of fp1 1,880

SampEn of AA 1,662

SampEn of ∆fp 0,816

Table 1. Standardized canonical discriminant function co-

efficients from the stepwise analysis.

5. Conclusions

The discriminant analysis has provided an improvement

of the results with respect to the classification by threshold

(5% for the learning set and 7.08% for the test set). For that

reason, it is worth considering the discriminant analysis in

predicting the evolution of AF because this improvement

in the classification of AF could be of great importance in

the regular clinical practice.

To sum up, a new method based on the mathematical

regularity of spectral parameters has been introduced as

an original and improved way to predict the evolution of

paroxysmal AF episodes. From the results we can deduce

that the the future evolution of AF affects not only to the

values of spectral parameters but also to their variability in

time. The SampEn of the spectral parameters is higher

for the non-terminating than for the terminating episodes.

The spectral parameters mathematical regularity might be

associated with the physiological organization of the atrial

activation This good results make this new method a useful

tool that can help clinicians in the management of AF.
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Predicted Group Total

N T

Learning cases Count N 10 0 10

T 0 10 10

% N 100 0 100

T 0 100 100

Test cases Count N 15 1 16

T 1 13 14

% N 93,75 6,25 100

T 7,14 92,86 100

Table 2. Type N and T correctly classified recordings for

both learning and test sets by using the discriminant anal-

ysis.
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