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Abstract

During a 2D echo exam, the transducer position is var-

ied to elicit important information about the heart func-

tion and its anatomy. Knowledge of the transducer view-

point is important in automatic cardiac echo interpretation

to understand the regions being depicted as well as in the

quantification of their attributes. In this paper, we address

the problem of inferring the transducer viewpoint from the

spatio-temporal information in cardiac echo videos. Un-

like previous approaches, we exploit motion of the heart

within a cardiac cycle in addition to spatial information to

discriminate between viewpoints. Specifically, we use an

active shape model (ASM) to model cardiac appearance

in an echo frame, and cardiac motion is modeled using

eigen-motions of ASM feature tracks. We test our method

on 2 data sets of patients with various cardiac diseases,

and we report comparison with re-implementations of two

state-of-the-art view recognition methods.

1. Introduction

2D Echocardiography is an important diagnostic aid

for morphological and functional assessment of the heart.

Much of the practice of echocardiography requires man-

ual intervention in both imaging and in interpretation. In

particular, the transducer position is varied during an echo

exam to capture different anatomical sections of the heart

from different viewpoints. Methods for automatic inter-

pretation of echocardiograms are now becoming increas-

ingly available. However, due to the large difference in ap-

pearance of the cardiac anatomy under different transducer

positions, many of these methods find it difficult to make

accurate cardiac assessment without the knowledge of the

transducer position. Thus automatic inference of trans-

ducer viewpoint is important in automatic cardiac echo in-

terpretation for a better understanding of the regions being

depicted as well as in the quantification of their attributes.

This in turn will enable better computer-aided diagnosis

and decision support in future.

Computer vision researchers have worked have worked

on the problem of cardiac view recognition, especially for

the popular views such as apical four chamber, parasternal

long axis, short axis view, etc. [1–5]. In the parts-based

approach of [1], heart chambers are modeled using a re-

lational graph and Markov Random Fields for each view-

point. In [5], the standard views were represented by tem-

plates obtained by applying multiresolution spline filters to

intensity images. After elastically matching a new view to

the templates, the deformation energy and similarity match

are fed as features to a linear discriminant classifier. In [3]

and [4], view recognition is cast as a problem of multi-

class object detection. After filtering the image intensi-

ties with Haar wavelets, a multi-class classifier using ML

Boosting is applied, with one class per viewpoint.

Our spatiotemporal modeling approach presented here

utilizes the machinery of active shape models (ASM) [6]

and active appearance models (AAM) [7]. ASMs and

AAMs are effective statistical tools for modeling the ap-

pearance and texture of nonrigid objects, and have been

extensively applied in computer vision. They have also

been previously used for echocardiogram segmentation

and tracking [8, 9]. A variant of AAMs, Active Appear-

ance Motion Models (AAMMs) [10] is most similar to

our work. In AAMMs, shape and texture are represented

jointly across the entire cardiac cycle, and motion is cap-

tured in the shape vector. While their shape/motion model-

ing is used to constrain tracking, we will use motion eige-

nanalysis as a feature for viewpoint classification.

In this paper, we address the problem of inferring the

transducer viewpoint from the spatiotemporal information

in cardiac echo videos. Unlike previous approaches, we

exploit motion of the heart within a cardiac cycle in addi-

tion to spatial information to discriminate between view-

points. Specifically, a statistical spatiotemporal model of

cardiac appearance called the Active Shape Model (ASM)

is constructed for each echo viewpoint. To represent the

characteristic heart motion over the cardiac cycle, we track

ASM features over the cycle and construct linear PCA mo-

tion models for each echo viewpoint. Given a video of an

unknown echo viewpoint, we fit the combined ASM and

motion models from each viewpoint to the input video,

choosing the model with the best fitting parameters.

2. Method

Our approach to view recognition is based on building

spatial and temporal models for known viewpoints from

sample learning data and using a matching algorithm for
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resolving the best matching model. The spatial and tex-

tural information across frames of the echo sequences of

a training set are used to build viewpoint-specific active

shape models. Next, the ASM models are tracked within

the training sequences to generate motion models for each

viewpoint class. To determine the viewpoint of an un-

known single heart-cycle echo sequence, we fit a candi-

date ASM to each of the frames in the sequence to create

a tracked ASM sequence. Motion information derived by

tracking ASMs through a heart cycle is then projected into

the eigen-motion feature space of the viewpoint class. The

combined fit of the ASMs and the motion models are then

used to evaluate the overall spatio-temporal model fit. The

best viewpoint class is then determined by a winner-take-

all approach.

2.1. Appearance modeling

Using the paradigm of active shape models [6], we rep-

resent shape information in an echo frame by a set of fea-

ture points obtained from important anatomical regions de-

picted in the echo sequences. For example, in apical 4-

chamber views, the feature points trace the mitral valve and

inner and outer boundaries of the left ventricle. While the

feature points are manually isolated during training stage,

they are automatically identified during matching.

For each view, a number of training images were col-

lected from cardiac cycle video clips – covering different

patients, diseases, and time offset within the cycle. We as-

sume that each echo video clip represents a full heart cycle.

Each training image is represented by a shape vector s ob-

tained by concatenating the locations (x, y) of n features

f1, f2, . . . , fn as

s = [x1, y1, . . . , xn, yn]T . (1)

Next, we form image patches centered around the feature

locations to capture texture information. Given a training

image with n features, the texture vector t concatenates

the pixels from all the patches into one long vector, where

patch size is matched to the pixel spacing between features.

Fig. 1 shows the feature points we use for two different

cardiac views.

To construct the ASM model, we reduce the dimension-

ality of the spatial and textural vector using PCA to find

a small set of eigenshapes and eigentextures. The shape

s and texture t can then be linearly modeled to form the

active shape model as:
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Apical 4 Chamber Parasternal Long Axis

Figure 1. ASM feature points for two cardiac echo views.

(Best viewed in color.)
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q are retained in the PCA. The p-dimensional

vector a and the q-dimensional vector b are the low di-

mensional representations of shape and texture.

2.2. ASM fitting

Fitting an ASM to a new sequence involves finding a

similarity transform Γsim to position the model appropri-

ately and recovering the shape and texture vectors a and b.

This is iteratively estimated by alternating between shape

and texture update steps. Unlike most ASM techniques,

which require a manual initialization to start the model

fitting, we use an automatic initialization method where

a distance-to-eigenspace method is first used to generate

seed ASM initializations.

To evaluate an ASM fit at a given position, we measure

error of fit in shape space and texture space using Maha-

lanobis distance and the reconstruction error suitably nor-

malized. For image I , the ASM fit (a,b,Γsim) is

fit(a,b,Γsim) = a
T Σ−1

shpa+b
T Σ−1

texb+2R2/λq+1

tex , (2)

where R = ‖t − TTT
t‖, t = I(Γsim(x, y)), λq+1

tex is the

(q + 1)th texture eigenvalue, and Σshp and Σtex are diag-

onal matrices with PCA eigenvalues (see Cootes and Tay-

lor [11]).

2.3. Motion modeling

Using an ASM to track cardiac motion through a cy-

cle with m frames will produce m sets of feature points

{s1, s2, . . . , sm}, where each si is a column vector of

stacked ASM (x, y) feature coordinates. To create a

canonical representation, we vectorize the motion in the

cardiac cycle by (1) normalizing for image plane geom-

etry by applying the similarity transform from frame 1,

Γsim
1 , to all frames, (2) standardizing the time axis to a tar-

get length n using piecewise linear interpolation of feature

tracks, and (3) factoring out object shape by subtracting

out frame 1. This creates our final motion vector m

m = [s2 − s1, s3 − s1, . . . , sn − s1]
T .
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If each si contains F ASM points, the final vector m has

dimensionality 2F (n − 1).
Applying PCA to the training set of m yields a set of

eigenmotions e
m
i and mean motion m, giving us a lower

dimensional representation

m = M c + m M =


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where r eigenmotions are retained. The r-dimensional

weight vector c is our representation of object motion.

To collect training motions, the manual labeling effort

is significant since we must annotate entire sequences. We

developed a semiautomatic approach that leverages our

ASM tracker. We ran our tracker on a set of training se-

quences, evaluating the returned tracks and making man-

ual corrections as necessary. After vectorizing the motion

vectors and applying PCA, we obtained motion models for

our viewpoints of interest.

A new sequence m can be analyzed to evaluate the de-

gree of fit to our linear motion model. First, we project

m to find c, computing c = MT [m − m], and then the

motion fit is the Mahalanobis distance

Motion fit = c
T Σ−1

motc,

where Σmot is a diagonal (r x r) matrix of eigenvalues cor-

responding to e
m
1 , em

2 , . . . , em
r .

2.4. View recognition algorithm

Putting it all together, Fig. 2 presents our algorithm for

recognizing cardiac echo views. We assume that the in-

put sequence I1, I2, . . . , Im represents a single heart cycle,

and the motion models were trained assuming that frame

I1 is synchronized with the ECG R peak. For each cardiac

view, the algorithm estimates a model fit over the sequence

model fit =
1

m

m
∑

i=1

ASM fiti + Motion fit, (3)

which is the average appearance fit over the cycle (eqn (2))

plus the Mahalanobis distance on motion. The recognized

view is the one that minimizes this fitting metric.

3. Results

We now describe the results of testing our view recogni-

tion algorithm on two data sets.

3.1. Data sets

The first data set came from hospitals in India with

physicians recording a complete echo exam in continu-

ous loop videos. Thus no view segmentation or view an-

notation was present. Starting from video sequences of
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Figure 2. Our algorithm for cardiac echo view recognition.

India Hospitals Kaiser

# cycles # frames # clips # frames

A4C 26 597 40 1902

PLA 18 384 40 1742

PSAB 12 271 - -

PSAP 16 360 - -

Total 72 1612 80 3644

Table 1. We collected two cardiac view data sets for test-

ing, one from a group of hospitals in India, and a second

from Kaiser Permanente, Northern California.

the echocardiographer’s entire workflow, we manually ex-

tracted individual cardiac cycles for the four views shown

in Table 1: parasternal long axis (PLA), apical four cham-

ber (A4C), parasternal short axis - basal level (PSAB), and

parasternal short axis - papillary muscle level (PSAP). The

videos depicted heart motion of patients covering a range

of ages and cardiac diseases. The video was captured at

320x240 and 25 Hz, and a ECG trace waveform at the bot-

tom allowed us to synchronize extracted cycles with the

ECG R peak.

The second data set comes from a random draw of car-

diology patients from Kaiser Permanente Northern Cali-

fornia. The patients span a number of diseases, ages, and

Kaiser facilities. Clips were recorded during regular pa-

tient cardiology visits, and they typically record 1-2 sec-

onds of video. Frame 1 is often triggered by the ECG

R-wave peak, but it is not always synchronized. Clips

representing A4C and PLA views were identified manu-

ally from DICOM files; 14 patients were used for training

ASM models, and a separate set of 40 patients were used

for testing (see Table 1).

3.2. Training and testing

Because there is no separate patient training set for the

India data, we trained models and performed testing using

a leave-one-out methodology. When testing a sequence

from patient X, the entire data set minus X is used for

training – ASMs and motion models are generated on-the-
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India Hospitals Kaiser

ASM+ ML- PMK ASM+

Motion Boosting Motion

A4C 96.2% 80.3% 59.3% 97.5%

PLA 88.9% 75.5% 65.5% 82.5%

PSAB 91.6% 67.5% 47.7% -

PSAP 75.0% 70.9% 73.2% -

Ave 87.9% 73.5% 61.4% 90.0%

Table 2. Performance comparison for different view clas-

sification algorithms.

fly. For constructing the ASMs, we manually label frames

from all sequences, sampling the time axis at regular in-

tervals (about 1/4 cycle period). Motion modeling requires

the entire training sequence to be annotated, so we lever-

aged the ASM model to track the sequences, evaluated and

manually corrected the automatic tracks, and used this to

bootstrap motion training. After model training, the test

patient sequence is fed through view recognition; the re-

sults are shown in the first column of Table 2, labeled

“ASM+Motion”.

Our Kaiser data set is much larger, so we used separate

patient sets for model training and testing. A single ASM

and motion model is constructed for A4C and PLA views,

and they are used to evaluate the entire test set of 40 pa-

tients (2 clips per patient, 1 A4C, 1 PLA). Since the ECG

data is sometimes low quality, we cannot assume to have

R-wave-based timing for extracting exact cardiac cycles in

time. Thus, for the Kaiser data, we drop the motion anal-

ysis term from the model fit in Eqn. (3), relying only on

the appearance fit. The final column of Table 2 shows the

2-class A4C vs. PLA recognition results.

Finally, for the India data, our ASM+Motion method

compares favorably against two state-of-the-art tech-

niques, ML-Boosting [3, 4] and pyramid match kernels

(PMK) [12], the results of which are shown in the center

two columns of Table 2. PMKs are a generic object cate-

gorization technique, which we applied here to the domain

of cardiac view recognition.

4. Conclusions

In this paper, we addressed the problem of inferring the

transducer-induced viewpoints from echocardiographic se-

quences. The main differentiating feature of our approach

is that feature motion over the cardiac cycle is used for

view discrimination. However, if synchronizing ECG data

is not available, our system relies on average frame-by-

frame ASM appearance fitting. Overall, our spatiotempo-

ral modeling approach allows us to handle the complex

echo exam conditions that give rise to large variations in

the appearance of heart regions even within known stan-

dard views. Comparison with re-implementations of state-

of-the-art view recognition and general category recogni-

tion approaches indicate that our technique outperforms

these methods while putting minimal constraints on the ac-

quisition of these sequences.
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