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Abstract

In this paper we present a method of simultaneous reg-

istration of an entire sequence of frames of an echocar-

diographic sequence. In our approach, each echo frame

is modeled using a probability density function, and reg-

istration problem between all pairs of echo frames is for-

mulated as the problem of matching probability densities.

An information-theoretic criterion called the Jensen-Renyi

divergence is used to measure the distance between the

probability density functions. The Renyi’s Quadratic en-

tropy results in a closed- form solution for the registration

problem. Once the echo frames are registered, temporal

trajectories of corresponding feature points in successive

frames can be used to derive average velocity curves which

have been shown to be useful for disease discrimination.

To evaluate our technique for echo motion estimation for

disease discrimination, we tested on a data set including

cardiac echo from 21 patients of varying diseases. The

data set includes a total of 72 complete cardiac cycles and

contains 1612 frames. We compare our approach against

two competing motion detection techniques, optical flow

and Demons algorithm, on the same data set, and our mo-

tion detector performs best in terms of the separation be-

tween different diseases.

1. Introduction

Disease-specific understanding of echocardiographic

sequences requires accurate characterization of spatio-

temporal motion patterns. Similar motion patterns in the

designated cardiac regions can signify similar disease for

some patients. However, accurate characterization of these

patterns requires registration of regions depicted in succes-

sive video frames. Previous methods of motion estimation

have considered either successive pairs of echo frames or

frames over a narrow time window. They exploit corre-

spondence between points in successive frames using op-

tical flow, or model motion estimation as the problem as

a deformable surface fitting problem. To ensure consis-

tency between temporal motion fields over longer range

and better tracking, these methods often restrict the varia-

tions to lie along spline temporal models. However, due to

the highly non-rigid nature of heart motion, these methods

result frequently in incoherent motion estimates causing

erroneous estimation of spatio-temporal motion patterns.

In this paper we present a method of simultaneous reg-

istration of an entire sequence of frames of an echocardio-

graphic sequence. The approach uses probabilistic shape

matching wherein each echo frame is modeled using a

probability density function, and registration problem be-

tween all pairs of echo frames is formulated as the problem

of matching probability densities. An new information-

theoretic criterion called the Jensen-Renyi divergence is

used to measure the distance between the probability den-

sity functions. The Renyi’s Quadratic entropy results in

a closed- form solution for the registration problem. Once

the echo frames are registered, temporal trajectories of cor-

responding feature points in successive frames can be used

to derive average velocity curves which have been shown

to be useful for disease discrimination. To evaluate our

technique for echo motion estimation for disease discrim-

ination, we tested on a data set including cardiac echo

from 21 patients of varying diseases. The data set includes

a total of 72 complete cardiac cycles and contains 1612

frames. We compare our approach against two compet-

ing motion detection techniques, optical flow and Demons

algorithm, on the same data set, and our motion detector

performs best in terms of the separation between different

diseases.

The estimation of cardiac motion constitutes an impor-

tant aid for the quantification of the elasticity and contrac-

tility of the myocardium. Motion estimation techniques

that are based on a closed form solution to the registration

problem not only give more accurate registration but also

lead to the extraction of useful features for disease discrim-

ination and decision support.

The rest of the paper describes our approach in detail.

In the rest of this section, we will review related work on

motion estimation for automatic cardiac disease discrimi-

nation of cardiac echo videos. In Section 2, we describe

our overall approach to disease recognition from spatio-

temporal models. Finally, in Section 3, we present results

of disease discrimination of hypokinesia patients over nor-
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mal patients.

1.1. Related work

The estimation of cardiac motion and deformation from

cardiac imaging has important clinical implications for

assessment of viability in the heart wall. Different ap-

proaches have been proposed for motion recovery from 2D

echocardiographic video sequences. The most popular ap-

proach is the optical flow based methods[1,2], however the

estimates are often inconsistent with the actual observed

motion in the echo videos for cardiac regions due to the

low quality of the echo videos and non-smooth heart mo-

tion. Another approach is myocardial region segmentation

using deformable models [3], and the motion is then recov-

ered by aligning the segmented shapes. The dependency

on obtaining an accurate segmentation, however, remains

a significant issue, as there still are no fully automated ro-

bust and efficient. In Papademetris et al. [4], an Bayesian

approach, combined with the biomechanical model were

used the recover left ventricular deformation. It has the

advantage of accounting for the fiber directions in the left

ventricle, however this approach also depends on a good

segmentation of the heart. Finally, B-Spline based motion

estimation techniques [5] often restrict the variations to lie

along spline temporal models, which could leads to inac-

curate motion estimations when the movement regions are

far away from the spline control points.

While there is considerable work in cardiac echo region

motion estimation, not much work exists for automatic dis-

ease discrimination. Recently, there have been efforts to

discriminate diseases by analyzing spatio-temporal proper-

ties of heart regions. An approach for validating disease di-

agnosis through video similarity was reported in [6], which

used features from the entire heart region, restricting its

use in characterizing region-specific diseases. Later work

combined motion estimation using the Demon’s algorithm

with graph-based region segmentation approach [7] to im-

prove disease discrimination. Even so, the inaccuracies

of region segmentation using a graph-theoretic approach

and rough motion estimation using average velocities of-

ten lead to inaccuracies in disease discrimination.

2. Methods

We now present the details of our proposed spatio-

temporal motion estimation for disease discrimination al-

gorithm. Our approach is based on a key observation that

similar motion patterns in the designated cardiac regions

can signify similar disease for some patients. Accurate

characterization of these patterns requires registration of

regions depicted in successive video frames. Therefore a

consistent and accurate motion estimation is required. The

overall approach is as follows. For each disease and each

Figure 1. Illustration of the processing steps of our ECG

and heart sound based disease similarity search algorithm.

of its diagnostic viewpoints, we first extract cycles from

the echo video with the help of the ecg embedded in the

video; We then use the Jensen-Renyi divergence to achieve

the alignment of all frames within a heart cycle; Finally

motion features such as ”average velocity curve” are used

to discriminate different diseases. Each step of our algo-

rithm is illustrated in Fig. 1. We begin with the motion

estimation module, which align all the echo frames within

a heart cycle.

2.1. Motion estimation

In this section, we formulate the groupwise motion es-

timation using JR divergence. Let I1(x), I2(x), . . . , In(x) be

the successive frames that we want to estimate the motion

from, and they are within one cycle of the heart beat. We

represented these intensity images as probability density

functions. We then pose the simultaneous alignment of

multiple frames as the problem of determining the trans-

formation parameters µ i such that the Jensen-Renyi di-

vergence between the probability density functions of the

echocardiographic images is minimized.

The Jensen-Renyi divergence [8] between probability

density functions is defined as:

JRβ (P1,P2, ...,PN) = Hα(∑βiPi)−∑βiHα(Pi) (1)

where Hα(X) is Renyi entropy of order α (α ≥ 0), which

is defined on a random variable X and is given by

Hα(X) =
1

1−α
log(

n

∑
i=1

pα
i ) (2)

where Pi are the probabilities of echocardiographic frames

I1( f1(x; µ1), I2( f2(x; µ2), ..., In( fn(x; µn) within a single

heart cycle, and the transformation fi(x; µ i) describes the

deformation from the Ii to the reference frame, which is

chosen to be the frame corresponding to the ECG R peak
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(beginning of the systole). We use the Parzen window

technique to estimate the probability density function of

an image, if the kernel of the Parzen window is chosen to

be a Gaussian, the Pi can be viewed as a Gaussian Mixture

model.

The groupwise registration problem can then be formu-

lated as the problem of minimizing

argmin
µ i

JRβ (P1,P2, ...,PN)+λ
N

∑
i=1

||L fi||
2 (3)

where L f i is a regularization term to control the nature of

deformation. Note in Eqn. (2) above, the Renyi entropy is

a generalization of Shannon entropy, since limα−>1 Hα =
HS. Thus Jensen-Shannon divergence [9] is a special case

of Jensen-Renyi divergence when α → 1. When α =
2, H2 = − log(∑n

i=1 p2
i ) is called quadratic entropy. We

choose α to be 2 in our implementation of JR divergence

to estimate the motion, since it resulted in a closed-form

expression of the JR divergence if the probability density

function are represented as Gaussian Mixtures. We also

derive the analytic gradient of this match measure in or-

der to achieve efficient and accurate non-rigid registration.

The details of the derivation is quite involved, and will be

omitted here because of the space limit. The Jensen-Renyi

measure is then minimized over a class of smooth non-

rigid transformations, and the unknown displacement field

are updated iteratively until converges. Our motion esti-

mation is quite distinct from those existing in literature

because we are using a new information-theoretic crite-

rion, and it is achieving the non-rigid registration simul-

taneously instead done frame by frame.

2.2. Disease recognition using motion fea-

tures

To capture the overall motion of the heart region better,

we use the average velocity curve described in [6]. The

average velocity curve preserves a common sense of per-

ceived motion per direction and is obtained by averaging

the speed and direction of the velocity vectors at each pixel

in the region within each frame.

If we denote the velocity vectors per pixel (i, j) within

the region of interest in frame k as (ui j,vi j), the average

velocity vector in frame k is given by (δavg,θavg), where

δavg =
∑i ∑ j

√

(u2
i j + v2

i j)

N

θavg =
∑i ∑ j tan−1 ui j

vi j

N

(4)

where N is the number of image pixels in the region. The

average velocity curve is then given by (C(t) = (x(t),y(t))

where

x(t +1) = x(t)+δavgcosθavg

y(t +1) = y(t)+δavgsinθavg

(5)

By taking the projection of the average velocity curve

along x, y, and t, we can obtain three additional region fea-

tures. In particular, the projection onto x,y gives the total

extent of planar motion of the region and is a good indica-

tion of the mechanical performance of the corresponding

anatomical region. We also measure the area inside the re-

gion surrounded by the projection of the average velocity

curve, which has been shown to be a good feature to dis-

criminate between normal and abnormal echo videos [7].

To better capture the variance of the estimated motion

field, one other motion feature that we use is the histogram

of the motion field, whereas we calculate the magnitude

and orientation histogram respectively with 18 bins for

each histogram. Therefore each bin covers 20 degrees for

the orientation histogram.

The final feature set will include the average velocity

curve, area enclosed by the projection of the AVC, and mo-

tion histograms. These features will be then fed to a ma-

chine learning technique, where we chose to use the stan-

dard support vector machine (SVM) method for its proven

ability to classify high dimensional nonlinear data. A sub-

sets of the patient data sets with known disease labels are

as training data, and the accuracy of our algorithm will be

tested on the rest of the data sets.

3. Results

We now present experimental results on a 2 class prob-

lem: hypokinesia (C0) versus normal patients (C1). Hy-

pokinesia is a cardiac disease where the heart suffers from

reduced motion, so we expect the motion models to be

quite different between the two classes. Fig. 2 shows the

mean motion of normal patients versus Hypokinesia pa-

tients. It can be seen from this figure that the motion of

normal patients is much greater than the hypokinetic pa-

tients. Thus, we expect the motion features to differentiate

hypokinesia from normal patients.

Our data set came from hospitals in India with cardiolo-

gists recording a complete echo exam in continuous video.

The diagnostic viewpoint we use for hypokinesia is Api-

cal 4 Chamber (A4C). From these videos of the complete

workflow, we manually extracted individual A4C cardiac

cycles from both normal and hypokinesia patients. The

echo “workflow” video was captured at 320x240 and 25

Hz, and a ECG trace waveform at the bottom allowed us to

synchronize extracted cycles with the ECG R peak. Each

video sequence was about 5 minutes long per patient and

depicted several heart cycles. Our current collection has

over 200 echo videos or 200x5x30x60 frames. The physi-

cians in our project assisted us in their interpretation, so
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Normal Hypokinetic

Figure 2. Motion pattern for normal patients and hypoki-

nesia patients. (Best viewed in color.)

Recog. All patients Hypokinesia C0 Normal C1

Rate (N = 21) (N = 16) (N = 5)

JR Div. 76.19% 75.0% 80.0%

Demons 61.90% 62.5% 60.0%

Optical Flow 57.14% 56.3% 60.0%

Table 1. Comparison of the disease recognition rate for

different motion estimation methods.

that the ground truth labels for the cardiac cycles could be

obtained. Due to the effort in manual labeling for model

training, we report our results on a data set with 16 hypoki-

nesia patients and 5 normal patients.

The testing results for our disease recognition algorithm

are reported in Table 1 together with the results gener-

ated using Demons algorithm and standard optical flow

approach. During testing, because of our data set size, we

employed a leave-one-out methodology: when testing a se-

quence from patient X, the entire data set minus X is used

for training. From Table 1, it is evident that our method

achieve a better recognition rate than the other two rival

techniques. We believe that increasing the number of pa-

tients will lead to better recognition rates for all the tech-

niques.

4. Discussion and conclusions

In this paper we have demonstrated that estimates of car-

diac deformation can be obtained from ultrasound images

using an information theoretic approach. Our method is

able to simultaneous register an entire sequence of frames

of an echocardiographic sequence. Once the echo frames

are registered, motion features such as temporal trajecto-

ries of corresponding feature points in successive frames

can be used to derive average velocity curves which have

been shown to be useful for disease discrimination. Our

motion estimation technique performs best in terms of

the separation between different diseases when compared

against two competing techniques. Future work will in-

volve more extensive experiments on more data sets from

a large number of disease classes.
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