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Abstract 

The aim of this work is twofold. First, we propose to 

investigate the capabilities of a new Bayesian approach 

for detecting premature ventricular contractions (PVCs), 

namely the Gaussian process (GP) approach. Second, we 

report an experimental comparison of different kinds of 

ECG signal representations, which are the standard 

temporal signal morphology, the discrete wavelet 

transform domain, the S-transform characteristics and 

the high-order statistics. In general, the obtained 

classification results show that the GP detector can 

compete seriously with state-of-the-art methods since it 

allows to yield better overall accuracy as well as better 

sensitivity. In addition, among the different kinds of 

features explored, those based on high-order statistics 

appear to be the best compromise between accuracy and 

computational time for PVC detection. 

 

1. Introduction 

The detection and classification of ECG arrhythmias 

such as premature ventricular contraction (PVC) is 

essential for the treatments of patients with heart disease. 

For such purpose, simple as well as sophisticated 

algorithms exploiting different classification strategies 

with different features representations of the ECG signals 

have been proposed [1]-[3]. 

 In this paper, we propose to investigate the 

capabilities of a new Bayesian approach for detecting 

premature ventricular contractions (PVCs), namely the 

Gaussian process (GP) approach [4]-[6]. In addition, we 

report an experimental comparison of different kinds of 

ECG signal representations, which are the standard 

temporal signal morphology, the discrete wavelet 

transform domain [1], the S-transform [7], which is an 

extension to the ideas of wavelet transform, and the high-

order statistics [3]. The main idea of GPs is to assume 

that the probability of belonging to a class label for an 

input beat is monotonically related to the value of some 

latent function at that beat. Such monotonic relationship 

is defined according to a so-called squashing function 

(e.g., the logistic and the probit functions). A Gaussian 

process prior characterized by a zero mean and a 

covariance matrix embedding a set of hyperparameters is 

placed on this latent function. The inference is made by 

integrating over the latent function values through an 

analytical approximation based on the Laplace technique. 

In the prediction phase, the predictive mean and variance 

for the approximate Gaussian posterior over the latent 

variable of the considered beat are first computed. Then, 

the approximate predictive distribution for the beat label 

is derived either analytically or by approximation 

depending on the adopted squashing function.  

2. Gaussian process classification 

Let us consider a supervised binary classification 

problem. Let us consider a training set D=(X,y) 

consisting of a matrix of training beats 

[ ]TNxxxX ...21=  where N is the number of beats 

and [ ]TNyyy ...21=y  is the corresponding target 

vector. To each vector xi ∈ ℜd (i = 1, 2, …, N), we 

associate a target (label) yi ∈ {-1, +1}. Given this training 

set D, we aim to predict the label of a new test beat *x  by 

computing the output probability ),|( *xDyp * .  

In GPC, the probability of belonging to a class label 

yi=+1 for an input sample xi is monotonically related to 

the value of some latent function fi. Such monotonic 

relationship is defined according to a squashing function; 

which can take several forms (e.g., logistic and probit 

functions): 
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 A Gaussian process prior (GP) characterized by a zero 

mean and a covariance matrix embedding a set of 

hyperparameters � is placed on this latent function. The 
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prediction of the output probability for the test beat *x  is 

obtained by integrating over the latent function *f  as 

follows: 

( ) ( )∫=+= ***** ,,|,|),,|1( dfDfpfypDyp exeex **
 

 (2) 

The second part of the integral (2) represents the 

distribution of the latent variable corresponding to the test 

beat *x . It is obtained by further integrating over 

[ ]Nfff ...21=f :   

 
( ) ( ) ( )∫= fe,fef,xXex ** dDpfpDfp |,,|,,| **  (3) 

where p(f|D,�) is the posterior over the latent variables: 
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p(y|f,�) is the probability of each observed class label 

given the latent function value. It can be one of the forms 

adopted in (1). p(y|X,�) is the marginal likelihood and 

p(f|X,�) is the GP prior over the latent functions: 

     









−= ffK
K

eX,|f
1-

2

1
exp

)2(

1
)(

2/N
p

π
  (5) 

where each term of the covariance function K is a 

function of xi and xj. A popular covariance function is the 

squared exponential (or Gaussian RBF), i.e. 
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where j is the variance and l is the length scale; they 

form the hyperparameter vector �, i.e. �=[l j]. 

Since the integrals in equations (2) and (3) are not 

analytically tractable due to the nonlinearity in the 

likelihood terms, analytical approximation or Monte 

Carlo methods have been adopted. In next section, we 

describe the well known analytical approximation based 

on the Laplace algorithm. 

3. Laplace algorithm 

The Laplace approximation uses a Gaussian 

approximation q(f|D,�) to the non-Gaussian posterior in 

the integral (3). This approximation is based on the 

second order Taylor expansion of logp(f|D,�) around the 

maximum of the posterior: 
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Where f̂ and A are the mean and the covariance 

matrix, respectively, and they are given by:  
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The covariance matrix represents the Hessian of the 

negative log posterior at the maximum point. In order to 

compute f̂ and A we can use the posterior p(f|D,�) 

formulated in (4). By taking the logarithm of this 

posterior and introducing the expression (5) for GP 

priors, we obtain the following expression: 
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Differentiating equation (10) with respect to f we 

obtain: 
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At the maximum of ょ(f) we have:   

 

         
( )),ˆ|(logˆ efyKf p∇=

                (12) 

 

and the covariance matrix is approximated by the 

curvature at the mode of the negative inverse Hessian:  
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where:   

 

)),ˆ|(log( efyW p−∇∇=
                (14) 

 

Since (12) is nonlinear, the computation of f̂ is 

achieved by numerical methods such as the Newton 

method. After this computation, the Laplace 

approximation to the posterior is completely defined by:  
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The prediction of the test beat x* is evaluated by 

replacing the computed Gaussian approximation into the 

equation (2): 

( ) ( )∫=+= ***** ,,|,|),,|1( dfDfqfypDyq exeex **

 (16) 

where 
( )ex* ,,|* Dfq

 is a Gaussian with mean and 

variance given as follows: 
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and 
[ ]TNkkk ),(...),(),( **2*1 xxxxxx)k(x* =

 is a 

vector of prior covariances between x* and the training 

input matrix X. It is worth noting that if the probit form is 

adopted for the squashing function, then the prediction 

(14) can be evaluated analytically: 
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The general form of the Laplace algorithm can be 

summarized as follows: 

 

Training phase: 

Step 1: Given the training set D=(X,y) and the 

hyperparameter vector �, compute the 

covariance matrix K. 

Step 2: Compute f̂  from (12) using the iterative 

Newton method. 

Step 3: Compute the Hessian matrix A related to 

the negative log posterior at the maximum 

point f̂ from (13). 

 

Test phase: 

Step 4: Given a test beat x*, compute 

),,|1( * ex*Dyq +=
 according to (18), and 

if it is greater or equal to 0.5 assign the 

label ‘+1’ to x*, otherwise choose label ‘-

1’. 

 

 

 

 

 

4. Experimental results 

The experiments were conducted on the basis of ECG 

data from the MIT-BIH arrhythmia database [8]. The 

beats refer to the recordings of 45 patients. These 

recordings were subdivided into two groups, one of 18 

and the other of 27 recordings. While the first group was 

used both for training and testing purposes, the second 

one was exploited just for testing the detection system on 

completely unseen recordings. For feeding the 

classification process, we adopted in this study different 

representation of the ECG signals, which are the standard 

temporal signal morphology, the discrete wavelet 

transform domain, the S-transform characteristics and the 

high-order statistics. In addition, for each representation, 

we considered also three temporal features that are the 

QRS complex duration, the RR interval (i.e., time span 

between two consecutive R points representing the 

distance between the QRS peaks of the present and 

previous beats), and the RR interval averaged over the ten 

last beats [2]. 

 

Table 1. Classification results reported in terms of overall 

accuracy (OA), sensitivity (Se) and specificity (Sp) 

achieved on both 18 and 27 records. 

  
                 18 Records 27 Records 

Feature 

Typology 

OA 

(%) 

Se 

(%) 

Sp 

(%) 

OA 

(%) 

Se 

(%) 

Sp 

(%) 

Morph. 94.8 95.3 94.7 94.1 77.6 94.9 

W2 94.8 95.3 94.7 94.1 77.6 94.9 

W3 94.8 95.2 94.7 94.0 77.4 94.8 

W4 94.8 95.3 94.7 94.0 77.4 94.8 

S-transf. 97.1 97.6 97.0 93.6 82.3 94.1 

HOS2 96.4 97.2 96.3 96.9 84.7 97.5 

HOS3 95.7 96.0 95.6 90.9 88.5 91.0 

HOS4 95.2 95.4 95.2 88.8 90.0 88.8 

 

Table 2. Computational times required by each feature 

typology during the training and test phases (the test time 

refers to a single beat). 

  
Feature 

Typology 

Training 

Time [s] 

Test Time 

[ms] 

Morph. 416 6 

W2 429 9 

W3 546 9 

W4 592 11 

S-transf. 320 1130 

HOS2 774 43 

HOS3 566 45 

HOS4 1103 141 

 

In order to train the GP classifier and to assess its 

accuracy, we selected randomly from the 18 records 600 

beats for the training set (i.e., 300 samples for both PVC 

and non-PVC classes, respectively). The classification 
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performance was evaluated in terms of three standard 

measures which are: 1) the overall accuracy (OA); 2) the 

sensitivity (Se); and 3) the specificity (Sp). Concerning 

the GP classifier, we adopted in the experiments the 

squared exponential covariance function characterized by 

the hyperparameter vector �=[l j]. During the training 

phase, the determination of this optimal hyperparameter 

vector is made according to the Bayesian learning 

procedure described in [7]. Table 1 reports the 

classification results obtained for the different feature 

typologies. As can be seen, the best accuracy achieved on 

the 18 records was obtained for the S-transform since the 

OA, Se, and Sp were equal to 97.1%, 97.6%, and 97.0%, 

respectively. Concerning the unseen 27 records, the best 

accuracy was obtained for the HOS features (i.e., 

cumulants of the second order) and the OA, Se and Se 

were equal to 96.9%, 84.7%, 97.5%, respectively. It is 

worth noting that for all 45 records, the cumulants of the 

second order showed the best classification accuracy as 

the OA, Se, and Sp were equal to 96.7%, 90.9%, 96.9%, 

respectively. 

From these results it appears clearly that, among the 

different kinds of features explored, those based on 

cumulants of the second order appear to be the best 

compromise between accuracy and computational time 

(see Table 2). 

 

5. Conclusion 

The obtained classification results show that: 1) the GP 

detector can compete seriously with state-of-the-art 

methods [1] since it allows to yield better overall 

accuracy as well as better sensitivity (96.7% and 90.9% 

against 95.2% and 82.9%, respectively); 2) since the GP 

detector does not exhibit a particular sensitivity to the 

curse of dimensionality, all extracted features are 

exploited and no prior (tricky and time-consuming) 

feature reduction step is required; 3) the GP detector 

maintains a high generalization capability when passing 

from recordings seen during training to completely 

unseen recordings; 4) among the different kinds of 

features explored, those based on high-order statistics 

appear to be the best compromise between accuracy and 

computational time for PVC detection. 
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