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Abstract 

The complexity of short-term heart period (HP) 

variability was quantified exploiting the paradigm that 

associates the degree of unpredictability of a time series 

to its dynamical complexity. Complexity was assessed 

through k-nearest neighbor local linear prediction. A 

proper selection of the parameter k allowed us to perform 

either linear or nonlinear prediction, and the comparison 

of the two approaches to infer the presence of nonlinear 

dynamics. The method was validated on simulations 

reproducing linear and nonlinear time series with 

varying levels of predictability. It was then applied to HP 

variability series measured from healthy subjects during 

head-up tilt test, showing that short-term HP complexity 

increases significantly from the supine to the upright 

position, and that nonlinearities are involved in the 

generation of HP dynamics in both positions. 

 

1. Introduction 

Characterization of the complexity of heart period 

(HP) variability is an important problem in the study of 

the cardiovascular control. Previous studies indicate that 

the complexity of HP time series, measured as the 

absence of repetitive patterns into the series, decreases 

with the reduction of the competition among regulatory 

subsystems, e.g. induced by cardiovascular diseases [1] 

or alterations of the experimental conditions [2]. Another 

significant issue is the evaluation of the impact of 

nonlinear dynamics in cardiovascular variability, as 

different physiological states have been associated with 

different degrees of nonlinearity in HP variability [3]. In 

short-term (up to few minutes) HP variability, complexity 

is usually estimated through entropy or predictability 

measures [2,3], while nonlinearity evaluation relies on 

the use of surrogate data approaches [3]. 

In this study we introduce a method to evaluate 

together complexity and nonlinearity of short HP time 

series. Exploiting the paradigm of k-nearest neighbor 

local linear prediction [4], the method quantifies 

complexity and regularity of the series, and allows to 

infer the contribution of nonlinear dynamics through a 

comparison between linear and nonlinear predictability 

degrees. It is first tested on simulations reproducing 

linear and nonlinear dynamics with different complexity 

levels, and then tested on HP variability measured from 

healthy subjects during head-up tilt testing. 

2. Methods 

Let us consider a stationary time series X(n), n=1,...,N. 

The series is first normalized by subtracting the mean and 

dividing to the standard deviation, to obtain the 

dimensionless series x(n), n=1,...,N. To predict the current 

value x(n), we consider the pattern formed by the L 

previous samples of the series, xL(n)=[x(n-1),..., x(n-L)], 

and identify its k nearest neighbors as the k patterns 

xL(n1),..., xL(nk) having the lowest Euclidean distance to 

xL(n). To prevent overfitting, the neighbor patterns xL(nj), 

j=1,...,k, are kept separated from xL(n) using a Theiler 

window of W=N/10 points [5]. A system of k linear 

equations (one for each neighbor pattern) was then set as 
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The system is solved through standard least squares 

optimization, yielding estimates of the unknown 

coefficients, ( ) ( )Lcc ˆ,...,1ˆ , that are then used to predict the 

current value of the series as 
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After predicting N-L samples, the unpredictability of 

the series x can be evaluated as mean squared prediction 

error (MSPE) [3,6] 

 

( ) ( )( )∑
+=

−
−

=

N

Ln

nxnx
LN

kLMSPE

1

2ˆ
1

),( , (3) 

ISSN 0276−6574 549 Computers in Cardiology 2008;35:549−552.



 

 

 

Figure 1. Linear simulation results. Distributions of the 

complexity (CI) and regularity (RI) indices evaluated 

over 100 simulation runs as at varying the pole modulus 

of the linear process using local prediction (black) and 

global prediction (white) are in a and c. Percentages of 

nonlinear dynamics detected by CI and RI are in b and d. 

while its predictability can be calculated as squared 

correlation (SC) between original and predicted data [3] 
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According to (3) and (4), MSPE and SC are functions 

of the number k of neighbors involved into local linear 

prediction, and of the length L of the prediction patterns. 

The number of neighbors is a key parameter, as it 

determines the nature of the predictor (i.e. linear or 

nonlinear) [4]. Using a small neighborhood (low k) 

corresponds to perform a strict local prediction that 

allows the predictor to describe the possible nonlinear 

manifold of the data. On the contrary, a global linear 

prediction is performed with a large neighborhood (high 

k). In this study, we set kmin=N/10 to perform local 

prediction [5], and kmax=N-L-W+1 to perform global 

prediction [6]. The choice of L was optimized for each 

considered series, selecting the value Lopt that yielded the 

maximum predictability. This was possible since out-of-

sample prediction avoids overfitting, and thus the 

predictability is not indefinitely increasing with L. Hence, 

application of local and global prediction led us to 

provide for the series X complexity indices (CIl, CIg) and 

regularity indices (RIl, RIg) as follows 

 

 

Figure 2. Nonlinear simulation results. Distributions of 

the complexity (CI) and regularity (RI) indices evaluated 

over 100 simulation runs as at varying the percentage of 

additive noise using local prediction (black) and global 

prediction (white) are in a and c. Percentages of nonlinear 

dynamics detected by CI and RI are in b and d. 
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CI and RI measures range between 0 and 1, with high 

predictability corresponding to CI~0 and RI~1 and high 

unpredictability to CI~1 and RI~0. While RI is strictly 

bounded between 0 and 1, CI may slightly exceed 1 for 

very unpredictable series. 

The comparison between local and global prediction 

was used to infer the presence of nonlinearities 

underlying the dynamics of the series X. Specifically, 

nonlinear dynamics were detected when local prediction 

yielded higher predictability than global prediction 

(CIl<CIg or RIl>RIg). 

3. Simulations 

The proposed approach was tested on simulations 

reproducing both linear and nonlinear dynamics with 

different imposed degrees of predictability. Linear 

dynamics were realizations of a bivariate autoregressive 

process with two conjugate imaginary poles with 

modulus r, driven by white Gaussian noise w 
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Nonlinear dynamics were reproduced by the Tent map 

with control parameter set to produce chaotic dynamics 
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Figure 3. HP variability series measured in the supine and 

upright position for a representative subject are in a and 

c. The corresponding MSPE and SC functions calculated 

as in (3) and (4) for local prediction (k=kmin) are plotted in 

b and d (black circles), along with the values of CIl and 

RIl (white circles), and of CIg and RIg (triangles). 
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To blur nonlinear dynamics, the Tent map was corrupted 

with additive Gaussian white noise with variance equal to 

an assigned percentage α% of the variance of the map 

generated in (7). 

One hundred realizations of the two simulations, each 

lasting 300 samples, were generated for each value 

assigned to the parameters r and α%. Results are depicted 

in Figs. 1 and 2, indicating that: (i) values of the 

complexity and regularity indices reflect the 

predictability of simulated series, as increasing the pole 

modulus r in linear series and decreasing the amount α% 

of noise in nonlinear series determined a larger 

predictability measured by lower CI values and higher RI 

values; (ii) local and global prediction led to super 

imposable distributions of the indices for linear time 

series (Fig. 1a,c), while local prediction is more accurate 

than global prediction to determine the predictability of  

 
 

Figure 4. Real data results. Distributions over 10 subjects 

(mean+SD) of the complexity (CI) and regularity (RI) 

indices evaluated using local prediction (black) and 

global prediction (white) are in a and b. * p<0.001 

Supine vs. Upright, Student t-test for paired data. 

nonlinear time series (Fig. 2a,c); (iii) in presence of non 

random time series, i.e. approximately r>0.5 in Fig.1 and 

α%<100 in Fig. 2, both CI and RI indices are able to 

detect the nature of the simulated dynamics, as NL% is 

very low for linear series and very high for nonlinear 

series (note that for low r and high α% the series are 

almost fully unpredictable, thus rendering meaningless 

the assessment of nonlinear dynamics). 

4. Application to heart period variability 

The experimental protocol included ten young healthy 

subjects (24.1±2.1 yrs) in whom the surface ECG (lead 

II) was acquired in the supine position after subjects’ 

stabilization, and in the upright position after passive 60º 

head-up tilt. After ECG digitalization (1KHz sampling 

rate, 12 bit resolution), QRS complexes were located by 

parabolic interpolation and the RR intervals measured as 

the temporal distance between consecutive R peaks. The 

series were then cleaned up from artifacts and two 

stationary sequences of 300 beats were selected in the 

supine and upright positions. 

Fig. 3 reports an example of HP variability measured 

in the two positions for a representative subjects, as well 

as the results of the prediction analysis. In the supine 

position, minimum MSPE and maximum SC for the local 

prediction were found at Lopt=4. In correspondence, 

global prediction yielded a lower predictability degree, 

suggesting the presence of nonlinear dynamics 

underlying the investigated series. In the upright position, 

RI and CI were evaluated for Lopt=4, and no differences 

between local and global prediction were noticed, 

suggesting that the HP dynamics is substantially linear. 

Results of the analysis extended to the 10 subjects are 

summarized in Fig. 4. According to both CI and RI 

measures, more than 50% of the HP variance was 

described by local and global predictors in the supine 

position, and the predictability increased significantly 

with the transition to the upright position. The 
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predictability degrees were not statistically different 

when evaluated by local and global prediction. However, 

the comparison of the two approaches in the single time 

series suggested that nonlinearities are involved in HP 

dynamics (CIl<CIg and RIl>RIg) in 5 subjects at rest and 4 

subjects after tilt. 

5. Discussion 

The results of the present study suggest that k-nearest 

neighbor local linear prediction is an efficient tool to 

quantify complexity in short time series. Simulations 

showed that both predictability and unpredictability 

measures are able to follow changes in complexity 

imposed in short linear and nonlinear time series. 

Application to real data evidenced that the indices detect 

the complexity of short-term HP dynamics, as well as its 

significant reduction in the transition from the supine to 

the upright position. These results agree with the 

expected physiological behavior: for instance, a 

simplification of the heart rate dynamics, leading to a 

lower complexity of HP series, has been previously 

reported in correspondence of the rise of a dominant low 

frequency oscillation induced by the sympathetic 

activation associated to head-up tilt [7]. Our results also 

indicate that in the considered experimental protocol 

local and global predictors provide comparable 

complexity degrees, and that complexity can be assessed 

equally well using predictability- or unpredictability-

based indices. 

Besides the quantification of complexity, this study 

introduces also a new approach to assess the presence of 

nonlinear dynamics in short-term HP variability. The 

traditional method to test for nonlinearity in time series is 

that making use of a set of surrogate data, that are copies 

of the original series in which the property under 

investigation (in this case nonlinear dynamics) is 

destroyed, while other properties (e.g., amplitude 

distribution and linear correlation) are maintained [8]. 

Here we propose an alternative approach, based on 

comparing the predictability (or unpredictability) degrees 

given by local prediction and global prediction. Our 

hypothesis is that if a local model yields a better 

prediction than a global model, indicated either by a 

lower CI or a higher RI, the improvement might be 

ascribed to a significant contribution of nonlinear 

dynamics which are detected by the local model but not 

by the global one. Simulation results showed that this 

approach works well for both linear time series, in which 

prediction is slightly better using a global model, and 

nonlinear time series, in which the predictability is much 

larger when a local model is adopted. The application on 

real cardiovascular data seems also effective, showing 

that –although global and local prediction yielded 

comparable average results– nonlinear dynamics might 

be involved in about a half of the considered subjects, in 

either body position. Previous studies have also shown 

how nonlinear dynamics may contribute to short-term HP 

variability both in the supine and in the upright body 

positions [3,9]. Hence, although its agreement with the 

traditional surrogate approach has not been tested yet, 

this new method to look for nonlinearity in time series 

seems promising; it offers also the advantages of being 

independent on the structure of the analyzed time series 

(while surrogate approaches may fail to reproduce some 

features while destroying nonlinearity), and of 

demanding a reduced computational effort. 
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