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Abstract

OT interval is a surface ECG measure which has been
the subject of great research interest. Usually, a
prolongation of the QT interval beyond the normal value
is associated with bad cardiac prognosis. In this paper
we revisit the wavelet transform based method. Rather
than using a threshold related or the highest inflection
point of the derivative, we use the extreme on the second
derivative which appears ahead of the inflexion point.
This rule differs from the thresholds one in its simplicity
of application and its potential for real time analysis. The
algorithm detects the end of the T-wave by using the first
and second derivative on the fifth scale. Results for the T
wave obtained in simulations give a mean error of -6.73
+/- 14.5 ms (-7.80 +/- 21.04 ms when adding white noise
in a SNR of approximately 4 dB) whereas results in
Physionet's QTDB give (-1.22 +/- 38.85 ms) in the case
of T end location. The results for the threshold method
were (-1.6 +/- 18.1 ms).

1. Introduction

QT Interval is a time lapse comprised from the
beginning of the ventricular depolarization (QRS
complex) to the end of the ventricular repolarization (T-
wave end). This is a difficult magnitude to measure
mainly because the T-Wave is very smooth in its
approach to the reference level.

Various methods have been proposed, but the lack of
a gold standard (other than annotated databases)[1]
makes it difficult to validate any of these methods.
Another commonly found problem is the non-uniformity
in cardiologist's criteria. They usually agree about the end
of the T-wave when looking at a normalized ECG printed
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in paper, but when looking at digital signals, where more
resolution is available, non-uniformity in criteria arises.

A suitable tool to use for this task would be the
discrete wavelet transform (DWT)[2][3]. The DWT is a
signal analysis tool which decomposes a signal into a set
of sub-signals, each of them containing, non overlapping,
frequency band's information[4][5] Because of its very
nature it is easy to implement by means of a filter bank,
which decompose the signal in a very fast way.

The signal we are going to work with, comes
from a customizable simulator[6]. Amongst the
parameters that can be customized we can find heart rate,
it's standard deviation and noise level.

The algorithm used was the “Algorithme &
trous” also called redundant wavelet transform. In this
implementation, each scale is obtained by using filters
interpolated from the filters used in the previous scale.

The main purpose of this study was to determine
whether reliable measures could be obtained with an
algorithm that doesn't need to rely on thresholds to
determine wave boundaries.

2. Methods

The use of the DWT implies the choice of a suitable
mother wavelet. The wavelet we chose for our specific
problem was the quadratic spline since it has already
been used with good results by Li [4], Bahoura[7] and
Martinez[8].

Another important reason to choose this wavelet above
any other is because the filter bank associated with it
behaves like a signal differentiator that works only up to
a frequency. That is to say, the quadratic spline wavelet
allows the derivation of the signal components at a given
scale while ignoring all the information contained in
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other scales. Besides, the filters are themselves very easy
to implement and very fast, computationally speaking[8]
[9].

Once a mother wavelet was chosen, the next step
consisted in actually implementing the DWT by means of
the “algorithme 4 trous” also called redundant transform.

Having done some tests, the adequate levels of
decomposition needed in order to find the various events
were assessed. For instance, the QRS complex is a 1*
scale event whereas the T-wave lies in the 4™ and 5" scale
for its frequency range is around 4 Hz.

When the scale needed to study the T-wave was
identified, a marking was made on its first local
maximum or minimum, then it was differentiated again
in order to obtain the second derivative of the ECG in the
frequency band containing the T-wave.

Having obtained the second derivative, a search
window is established in the search for the last modulus
maxima (depending on the detected wave morphology). It
was this point the one we identified as the ending of the
T-wave, the logic behind this fact is similar to the one
found in a work of Zhang[10] who in turn used a method
based on mobile windows filtering which can be shown
to be analogous to the double differentiation of the ECG
signal.

In[10], a search is made for a maximum at a
transformed signal of the ECG signal s(t) according to

A(1)= ‘j;[\'(r)— s

(2.1)
By manipulating this expression, it can be shown that
it es equivalent to

A)=5(0)* p(t= W73 ) Wo(e)* s(r) (22)

Which in turn implies that it is a linear filter
manipulation with impulse response equal to

h()=p(t-Y5 )-wo()

(2.3)
Resulting in a transfer function of
sin(ofW ) - jrw
H(r)=w SIW) -y
<l (2.4)

And assuming << 1/W (if W=200 ms then f << 5 Hz
which is the typical ECG wave contents) it can be
approximate by

2 k)
s WS
H() =115
(29

which is a second derivative filter and so the selection of
the maximum of the moving window filtering is
equivalent to choosing the maximum of the second
derivative as proposed here in this paper. The selection of
the window size is equivalent to the selection of the scale
in the wavelet based method, since the window size
determines the low pass filtering effect of the filtering.
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This algorithm allows wave delineation without “a
priori” knowledge of the studied wave morphology. This
will come in handy shall this algorithm ever be
implemented in real time[5] for we are avoiding a series
of calculations.

T Wave

/\ 2nd derivative

Fig. 1 Outline showing some T-wave morphologies
and their derivatives.

Results

Once the algorithm was implemented, we proceeded to
apply it on a synthetic signal generated with the script
“ecgsyn”[6], from the physionet's website. The script was
set to generate signals sampled at 250Hz with added
white noise with various SNR (5.46, 7.96, 11.48 and 17.5
dB), mean heart rate was also varied (70, 100 and 130
beats per minute) and the standard deviation of heart rate
was set to 15 bpm. Also, monophasic and biphasic waves
were studied.

Figure 2 shows 3 heart beats with the detections made
for the ending of the T-wave.
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Fig. 2 Sample signal with red lines showing the detected
points.
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Since we don't have a gold standard for measuring the
T-wave's end, we had to resort to another method of
detection in order to perform the comparation. In this
paper we resorted to a well-validated method, such as the
threshold method in Martinez et al.[8]. We can see in
figure 3 three sample beats with the T wave delineation
provided by both algorithms to see how they compare.
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Fig. 3 Sample signal with annotations made by both
algorithms (Martinez [8] in green and this work in red).

In the tables 1 and 2 below we can see a summary of
the obtained results. Results are reported by taking
Martinez's algorithm, a positive result means that this
algorithm annotates after Martinez's reference while a
negative result means that it annotates before the
reference algorithm. This translates in results being
reported as the mean and the standard deviation of the
difference between marks made by each algorithm.

Biphasic Heart rate
T-wave

(synthetic) 70 100 130
Mean | SD |Mean| SD | Mean SD
(ms) | (ms) | (ms) | (ms) | (ms) (ms)
17.5 | -5.24 |17.12| -2.80 | 3.84 | -10.24 | 8.68
SNR 11.48 | -9.80 122.20| -3.44  6.96 | -10.12| 8.64
(dB)| 7.96 -12.48|23.52 -2.88 | 536  -9.44 | 8.76
5.46 | -8.56 |19.60 -4.04  8.40 | -9.96 | 8.88

Table 2 T-wave end results for the biphasic wave
(Using [8] as a refference)

In table 1 (monophasic T-wave) we can observe how
the marks tend to shift themselves to the right with
increased heart rate, yet standard deviation decreases. Not
only that, but the mean values tend to look more accurate
with increased added white noise.

On the other hand, in table 2, results were always
shifted to the right by as much as three samples but
dispersion was significantly lower in this case compared
to the monophasic wave.

The second validation for this algorithm was made
with the help of physionet's QTDB. The QTDB is a
database of heart beats manually annotated by one or two
cardiologists. This database is freely and publicly
available at physionet's web site[1]. This database has
become the standard against which tests are made
because of the lack of a gold standard in ECG wave
detection.

When comparing this algorithm to threshold methods
directly over physionet's QTDB[1] we can observe that
results are as good as Zhang's[10](in fact, dispersion is
one sample smaller in spite of being equivalent
algorithms) but continue to have dispersions significantly
greater than threshold methods (see table 3)

Monophas Heart rate
(ISCYE;}\:;?S 70 100 130 Authf)r Mean (ms) SD (ms)
Mean | SD | Mean| SD | Mean | SD Martinez [8] -1.6 18.1
(ms) | (ms) | (ms) | (ms) | (ms) | (ms) Zhang [10] 1.72 41.27
17.5] 17.68 |21.20 -1.24 | 11.80 |-11.92 12.92 Chen [6] -7.8 18.8
SNR 11.4] 21.52 123.04| 592 | 15.72|-13.52| 15.48 This work -1.22 38.85
(dB) 7.96| 14.16 123.96 11.44 18.80 -11.72 16.00 Table 3 T-wave end results for the QTDB
5.46| 8.88 122.32)10.24 [ 19.56 | -8.80 | 15.36 The results generated from the QTDB are really

Table 1 T-wave end results for the monophasic wave
(Using [8] as a reference)
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promising since we actually achieve the smallest bias of
all the tested algorithms. The downside being that
dispersion increases. The higher dispersion of this
method compared with the threshold ones may be seen as
a trade off for the added simplicity of the algorithm,
which rejects any kind of ad-hoc rule needed for
threshold methods.



4. Discussion and conclusions

T-wave delineation is an open problem in the field of
biomedical signal analysis, and as such, different
solutions and algorithms are often developed. We have
presented and validated a wavelet-based T-wave end
detector. The approach taken in this paper hopes to be of
a certain innovation because of it's two main premises:
The lack of any ad-hoc rule to determine the T-wave
ending and the lack of needing to preprocess the signal to
be analyzed.

The results have been compared with those of other
authors and have shown a good accuracy with respect to
the annotated values, as well as an acceptable dispersion
value.

Results are promising because they depend exclusively
on the wave morphology and not on calibrations or
heuristic rules that could be used to tweak results. The
problem with calibrations is that they are heavily
dependent on the calibrator.

Being a wavelet based detector which implies low-
pass filtering, noise effect is attenuated. For instance,
EMG associated noise shall, after applying the DWT, be
found mostly on the 1* level of decomposition. While
baseline wander will make its appearance in the 5™ level,
leaving the 4" level almost noise free in most of the
cases.
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