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Abstract

We propose a Bessel kernel based time frequency distri-

bution technique for identification and tracking of spec-

trum of Atrial Fibrillation (AF) in ECG. The algorithm

shows a good frequency resolution and a low RMS error

even when the noise dominates the signal which is criti-

cal for detecting the low amplitude AF activity within the

ECG. In comparison with other time frequency distribu-

tions, the Bessel kernel reduces cross terms between fre-

quencies in the multi-component ECG signal. Superiority

of the Bessel kernel method over the short time Fourier

transform (STFT) is demonstrated using a frequency mod-

ulated sinusoidal model and using real AF data. At low

signal to noise levels the Bessel distribution outperforms

the STFT and at an SNR of -5dB the RMS error is reduced

from 1.8Hz to 0.8Hz. Also it achieves a frequency resolu-

tion of 0.5Hz at an SNR of 0dB which is four times better

than that of the STFT.

1. Introduction

AF is the most common sustained cardiac arrhythmia,

increasing in prevalence with age, accounting for approxi-

mately one third of hospitalizations for cardiac rhythm dis-

turbances [1]. AF is characterized by the replacement of

consistent P waves on the ECG by rapid oscillations (fibril-

latory waves) that vary in amplitude, frequency, and shape,

associated with an irregular ventricular response. AF af-

fects approximately 10% of the population over age of 75

and is associated with an increased risk of stroke [1, 2].

Previous studies have shown that spectrum of the atrial

activity of the ECG under AF has a dominant peak (AF

frequency) and there is a significant correlation between

spontaneous or drug induced termination of AF and the

time variation of AF frequency [3], indicating the impor-

tance of accurately tracking the AF frequency in time.

Tracking of spectral content of a time signal can be done

using STFT, but it has an inherent tradeoff between time

and frequency resolution [4]. Stridh et al. [5, 6] employed

Wigner-Ville and Choi-Williams time frequency distribu-

tions for analyzing time variation of spectral content of AF,

but the accuracy and noise robustness of the algorithms are

inconclusive. As AF activity has a substantially low ampli-

tude in the ECG and almost undistinguishable from noise

and other ECG artifacts, it is important that a given method

has a significant robustness to noise. Sandberg et al. [7]

employed Hidden Markov models for frequency tracking

of AF, but the performance at SNR less than 0dB has not

been studied. The proposed Bessel kernel based time fre-

quency distribution technique is capable of tracking AF

frequency in ECG with a good frequency resolution and a

low RMS error even when the noise dominates the signal.

2. System model

Atrial fibrillation was mathematically modeled by a sum

of frequency modulated sinusoidals with time varying am-

plitude and its harmonics [7, 8] and is given by

s(t) =

M+1
∑

k=1

ak(t) cos[kω0t +
∆ω

ωf

sin(ωf t)] + n(t) (1)

where ak(t) = e−γ(k−1)(a + ∆a sin(ωat)), ω0 is the fun-

damental AF frequency, ωf is the frequency of frequency

modulation, ∆ω is the maximum frequency deviation, M
is the number of harmonics excluding the fundamental, γ
is the decaying factor of harmonics, a is the average ampli-

tude of the fundamental, ωa is the frequency of amplitude

modulation, and ∆a is the maximum amplitude deviation.

n(t) represents white Gaussian noise, artifacts from insuf-

ficient QRST cancelation, and other ECG artifacts. Ac-

cording to the model, AF frequency is given by

ωAF (t) = ω0 + ∆ω cos(ωf t). (2)

The objective is to accurately estimate ωAF (t), especially

when n(t) is higher compared to the amplitude of the fun-

damental a1(t). Though this model is an approximation

to the real AF signal, it is useful when analyzing the per-

formance of different algorithms. A time window of the

simulated AF signal is shown in Figure 1.
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Figure 1. Time window of 5 second interval of simulated

AF signal (1) at SNR = 0dB (ω0 = 2π7, ωf = 2π0.1,

∆ω = 2π1, M = 3, γ = 1, a = 100, ωa = 2π0.08,

∆a = 10).

3. Bessel distribution

Cohen’s class of time frequency distributions [4] is a

well known method for joint time frequency analysis and

is given by

Cs(t, ω;φ) =
1

2π

∫∫∫

ejξµ−jτω−jξtφ(ξ, τ)

×s
(

µ +
τ

2

)

s∗
(

µ −
τ

2

)

dξdµdτ (3)

where s(µ) is the time signal to be analyzed, t and ω are

time and frequency respectively, and τ and ξ are time lag

and frequency lag respectively. Limits of each integral is

from −∞ to ∞. The kernel function φ(ξ, τ) defines a par-

ticular distribution of the class.

The kernel of the Bessel distribution [9] is given by,

φ(ξ, τ) =
J1(2παξτ)

παξτ
(4)

where J1(·) is the Bessel function of first kind of order one

and α > 0 is a scaling factor. The time and frequency sup-

port properties of the joint distribution are preserved under

the condition α ≤ 0.5. The Bessel kernel for α = 0.1 is

shown in Figure 2. Due to the nonlinear nature of Cohen’s

Figure 2. Bessel Kernel (4) for α = 0.1

class of time frequency distributions, cross terms appear in

the distribution for a multi-component signal. The Bessel

distribution is capable of smoothing out these cross terms,

thus achieving a good frequency resolution—we illustrate

this fact, first using a sum of two complex exponentials

with constant amplitudes and then extend this idea to a sum

of frequency modulated signals.

Let the time signal be given by s(t) = A1e
jω1t +

A2e
jω2t. Thus,

s
(

µ +
τ

2

)

s∗
(

µ −
τ

2

)

= A2
1e

jω1τ + A2
2e

jω2τ

+2A1A2e
j(ω1+ω2)

τ

2 cos (ω1 − ω2)µ. (5)

Using (3) we write the Bessel distribution as

Bs(t, ω) = B
(1)
s,AT (t, ω)+B

(2)
s,AT (t, ω)+Bs,CT (t, ω) (6)

where Bs(t, ω) denotes the Bessel distribution, and

B
(·)
s,AT (t, ω) and Bs,CT (t, ω) are auto terms and cross term

of the distribution respectively. The aim is to minimize the

cross term without compromising the resolution of auto

terms. From (3), (4) and (5), B
(1)
s,AT (t, ω) can be written as

B
(1)
s,AT (t, ω) =

A2
1

2π

∫

e−j(ω−ω1)τ

∫∫

ej(µ−t)ξ

×
J1(2παξτ)

παξτ
dξdµdτ (7)

= 2πA2
1δ(ω − ω1) (8)

where δ(·) is the Dirac delta function and similarly for

B
(2)
s,AT (t, ω). The cross term Bs,CT (t, ω) is given by

Bs,CT (t, ω) =
A1A2

π

∫

e−j(ω−
ω1+ω2

2 )τ

∫∫

ej(µ−t)ξ

×
J1(2παξτ)

παξτ
cos (ω1 − ω2)µ dξdµdτ (9)

=
8A1A2

αωd

cos ωdt

√

1 −
(ω − ωm)

2

α2ωd
2

Π

(

ω − ωm

2αωd

)

(10)

where ωm = (ω1 + ω2)/2, ωd = |ω1 − ω2| and Π(·) is

the rectangle function. At a given time t = t0, (10) is

a half an ellipse centered at (ωm, 0) and has semi axes

(8A1A2)/(αωd) cos ωdt0 and αωd. Thus energy distri-

bution of the cross term can be controlled by varying α,

as shown in Figure 3. Cross term energy distribution de-

rived in (10) is a good approximation for a sum of fre-

quency modulated signals as shown in Figure 4 provided

that, ‖max(∆ω1,∆ω2)‖ ≪ ‖ω1 − ω2‖ where

s(t) = A1 cos [ω1t +
∆ω1

ωf1
sin (ωf1t)]

+A2 cos [ω2t +
∆ω2

ωf2
sin (ωf2t)]. (11)

With the above evidence, we assert that the method is well

suited for analyzing time variation of AF frequency under

the influence of noise, as the AF model comprises of sum

of frequency modulated signals.
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Figure 3. Bessel Distribution for sum of two complex

exponentials (a) α = 0.1, (b) α = 0.4

Figure 4. Bessel Distribution for sum of two frequency

modulated signals (a) α = 0.1, (b) α = 0.4

4. Results

Simulations were performed using (1) to generate AF

signals where additive white Gaussian noise (AWGN) was

used for n(t) at different SNR settings. Numerical imple-

mentation of the Bessel distribution can be found in [9]. α
was set to 0.5 in order to minimize the cross term effects

and at the same time preserving time and frequency sup-

port properties of the distribution. In order to analyze the

performance of the Bessel distribution it was compared to

the STFT. Results for SNR = 5dB, 0dB, -5dB are shown in

Figures 5, 6, and 7 respectively. The results were analyzed

using two performance measuring criteria, RMS error and

frequency resolution. RMS Error was used as the first per-
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Figure 5. Bessel distribution vs STFT for simulated AF

under AWGN at SNR = 5dB.

formance measuring criteria of the algorithm. It measures

the noise robustness and accuracy of a particular method

in estimating the AF frequency under a noisy environment
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Figure 6. Bessel distribution vs STFT for simulated AF

under AWGN at SNR = 0dB.
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Figure 7. Bessel distribution vs STFT for simulated AF

under AWGN at SNR = -5dB.

and is given by

ERMS =
√

〈[ωN (t) − ωAF (t)]2〉 (12)

where ωN (t) is the estimated AF frequency using time

frequency distribution under noise, ωAF (t) is the AF fre-

quency and 〈·〉 is the average over time. Simulation results

for RMS Error is given in Figure 8.

Frequency resolution was used as the second perfor-

mance measuring criteria and is estimated by time average

of 3dB Bandwidth of the distribution. It is another measure

of noise robustness in terms of the energy concentration

under a noisy environment and is given by

∫ ωmax(t)+ 1
2
ωr(t)

ωmax(t)− 1
2
ωr(t)

Ps(t, ω)dω = 0.5

∫

∞

−∞

Ps(t, ω)dω

(13)

where ωr(t) is the frequency resolution, ωmax(t) is the fre-

quency with maximum energy and Ps(t, ω) is a particular

time frequency distribution. Frequency resolution at a par-

ticular SNR setting will be given by 〈ωr(t)〉. Simulation

results for frequency resolution is given in Figure 9.

At low signal to noise levels the Bessel distribution out-

performed the STFT and at an SNR of -5dB the RMS error
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Figure 8. RMS Error of Bessel distribution and STFT for

simulated AF with AWGN.
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Figure 9. Frequency resolution of Bessel distribution and

STFT for simulated AF with AWGN.

was reduced from 1.8Hz to 0.8Hz. Also it achieved a fre-

quency resolution of 0.5Hz at an SNR of 0dB which is four

times better than that of the STFT.

In Figure 10, we present an example of real AF signal

taken from PhysioBank [10] AF Termination Challenge

Database in order to show the applicability and superior-

ity of the method.

5. Future work

Future work includes parameterizing Bessel distribution

for paroxysmal and persistent AF conditions, identifying

patterns in the distribution under pharmacological ther-

apy and direct current cardioversion, and generalizing the

Bessel distribution for other supraventricular tachyarrhyth-

mias including Atrial Flutter.
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