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Abstract

We propose a novel approach to the automated discrim-

ination of normal and ventricular arrhythmic beats. The

method employs Gaussian Processes, a non-parametric

Bayesian technique which is equivalent to a neural net-

work with infinite hidden nodes. The method is shown to

perform competitively with other approaches on the MIT-

BIH Arrhythmia Database. Furthermore, its probabilistic

nature allows to obtain confidence levels on the predic-

tions, which can be very useful to practitioners.

1. Introduction

Cardiac arrhythmias are one of the major causes of

morbidity and mortality in the Western world. Their

early diagnosis is often reliant on an analysis of electro-

cardiogram (ECG) traces, generally involving time-

consuming manual annotation by expert physicians. Be-

cause of this, several automated methods to detect arrhyth-

mic beats have been proposed, often achieving very good

levels of performance [1–3].

We present a novel approach for the automatic classifi-

cation of arrhythmic versus normal beats from ECG sig-

nals based on recent developments in Machine Learning.

We use the framework of Gaussian Process (GP) classifi-

cation [4], a non-parametric Bayesian technique which has

been shown to be highly accurate on non-linear classifi-

cation tasks while controlling complexity and avoiding the

pitfalls of overfitting. GPs are a natural way to define prob-

ability distributions over spaces of functions; they can be

viewed as a generalization of Neural Networks where the

number of hidden nodes (basis functions) tends to infin-

ity [5]. A key feature of GPs is their probabilistic nature,

which means that predictions are always accompanied by

an estimate of the associated uncertainty. This is a key ad-

vantage over standard non-linear classifiers such as neural

networks which generally can only provide a hard assign-

ment.

The method uses as input the spectral or wavelet trans-

form of segmented individual beats from a recording,

which requires much less manual annotation than meth-

ods based on interval estimation. We use an Automatic

Relevance Determination (ARD) kernel for the classifier to

automatically reduce dimensionality and extract the most

discriminant features by optimising weights.

We test the model on the MIT-BIH arrhythmia data set

on the two class problem of discriminating normal and pre-

mature ventricular contraction beats (PVC). The results we

report show that the method is competitive with the state of

the art, obtaining predictive accuracies on test data which

are frequently above 90%. This can be further increased by

thresholding over posterior probabilities and retaining only

predictions with high confidence; the model consistently

has a higher accuracy for prediction made with higher pos-

terior probability, indicating that the discriminant obtained

from the training data mirrors the structure of the whole

data set.

The rest of the paper is organised as follows: in the first

section, we briefly review Gaussian Process classification.

In the second section, we discuss the beat segmentation

algorithm and the feature selection procedure. We then

present our results on real ECG data, and conclude the pa-

per with a discussion of the strengths and weaknesses of

the method, as well as the possible future extensions.

2. Methods

2.1. Gaussian Processes for classification

In this section we briefly review the statistical founda-

tions of our approach; for a thorough review, the reader

is referred to [4]. A Gaussian Process (GP) is a (finite or

infinite) collection of random variables any finite subset

of which is distributed according to a multivariate normal

distribution. As a random function f(x) can be seen as a

collection of random variables indexed by its input argu-

ment, GPs are a natural way of describing probability dis-

tributions over function spaces. A GP is characterised by

its mean function µ(x) and covariance function k(x,x′),
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a symmetric function of two variables which has to satisfy

the Mercer conditions ([4]). In formulae, the definition of

GP can be written as

f ∼ GP (µ,K) ⇔ [f(x1), . . . , f(xN)] (1)

∼ N ([µ (x1) , . . . , µ (xN)] ,K)

for any finite set of inputs x1, . . . ,xN. Here

Kij = k (xi,xj) .

The choice of mean and covariance functions is largely de-

termined by the problem under consideration. In this pa-

per, we will use a zero mean GP with ARD covariance

function, in order to automatically select the most relevant

features from a high dimensional input space [6]

k (xi,xj) = exp

(

−1

2
(xi − xj)

T
Λ (xi − xj)

)

, (2)

where Λ is diagonal, with Λii denoting the precision

(inverse characteristic length-scale) of each feature of the

input matrix.

Given some observations y of the function f at certain

input values X , and given a noise model p(y|f ,X), one

can use Bayes’ theorem to obtain a posterior over the func-

tion values at the inputs

p (f |y,X, θ) =
p (y|f ,X, θ) p (f |X, θ)

p (y|X, θ)
(3)

where θ denotes the parameters of the GP prior (ARD pa-

rameters). One can then obtain a predictive distribution for

the function value f∗ at a new input point x∗ by averaging

the conditional distribution of p(f∗|f) under the posterior

(3)

p (f∗|y,X,x∗, θ) =

∫

p (f∗|f ,X,x∗, θ) p (f |y,X, θ) df .

If the noise model p(y|f) is Gaussian, then we are deal-

ing with a regression problem and one can obtain an an-

alytical expression for the posterior (3). In classification,

the noise model is non-Gaussian; in this paper, we will take

the noise model to be the logistic function

p (y = 1|f) =
1

1 + exp(−f)
.

In this case, the denominator of equation (3) cannot be

computed analytically and one must seek approximate so-

lutions. In this paper, we use the Laplace approximation

[7]. This computes a second order Taylor expansion of the

un-normalised posterior p (y|f ,X, θ) p (f |X, θ) about its

mode and then approximates the true posterior distribution

with a Gaussian centered at the true mode and with covari-

ance given by the Hessian of the un-normalised posterior.

2.2. Experimental setup

In this study experimental data were taken from the

MIT-BIH Arrhythmia database [8], for training and eval-

uation purposes of the proposed classifier. Specific record-

ings were selected according to the exhibited type of ar-

rhythmia; each recording was sampled at 360Hz, and

had sufficient amount of Normal and premature ventric-

ular contraction (PVC) beats, for training and evaluating

the model. Annotation provided by the database was used

to separate the beats before any preprocessing.

2.3. Data processing

Two different types of transforms were considered in the

analysis of the ECG signal. The first one is based on the

Fourier Transform while the second one on the Wavelet

Transform.

2.3.1. Fast Fourier Transform (FFT)

Each beat segment, consisting of 360 data points (one

minute), was transformed into the frequency domain using

a Fast Fourier Transform with a Hanning window. The

frequency based representation of each beat consisted of

180 frequencies, since it was sampled at 360Hz.

2.3.2. Wavelet Transform (WT)

The second type of features were obtained by the Dis-

crete Wavelet Transform. The Continuous Wavelet Trans-

form (CWT) of a signal x(t) is defined as:

Wax(b) =
1√
a

∫ +∞

−∞

x(t)ψ

(

t − b

a

)

dt, a > 0. (4)

The discrete wavelet transform uses a dyadic scale factor

a = 2k for k ∈ Z+. The wavelet that was used in this

work was from the Daubechie family [9]. It is noted that

the high frequency phenomena of a signal are captured at

the smallest scales, namely 22 and 21,while most of the de-

tails of the signal are contained from the third to the fifth

scale. Consequently, coefficients from these three scales

were selected as input features for the classification, re-

sulting in 900 features.

3. Results

3.1. Feature selection

To determine which frequencies are more relevant for

classification, for the features acquired from FFT, ARD

was used. Using ARD the five most relevant frequencies

were identified and then the characteristic length scale of
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Table 1. Classifier Performance in terms of Accuracy (%)(HC:High Confidence)

FFT WT

Recording Accuracy Accuracy Data of Accuracy Accuracy Data of

Thresh. 0.5 (%) Thresh. 0.8 (%) HC(%) Thresh. 0.5 (%) Thresh. 0.8 (%) HC(%)

106 93.2 95.8 89.23 98.61 99.53 95.58

119 100 100 100 99.84 99.89 99.49

200 98.32 99.08 97.61 97.61 98.53 95.97

203 87.9 93.37 80.79 96.9 98.53 95.55

221 96.16 96.7 97.18 96.16 96.92 95.69

223 88.43 96.8 71.43 90.67 96.54 81.59

228 99.8 99.8 99.8 99.11 99.65 98.43

233 97.96 98.78 96.98 96.19 99.35 90.94

each input feature was optimized for each recording. Thor-

ough experimental research indicate that using two fea-

tures (frequencies) achieves better performance, instead of

using a larger number of features.

The features obtained from the Wavelet transform, were

projected into a two-dimensional space, using Principal

Component Analysis (PCA). After PCA, the characteris-

tic length scale of each feature was estimated again using

ARD.

3.2. Performance evaluation

The performance measure that was used for the evalu-

ation of the classifier is simple misclassification error. In

the Gaussian Process framework, the misclassification er-

ror is computed by setting a threshold over the posterior

probabilities, since GPs produce a measure of uncertainty

instead of giving hard assignments to a class. This concept

can be further cultivated, by setting a threshold of 0.8 and

retaining test samples that have been assigned with poste-

rior probabilities higher than 0.8. In this way, a measure of

high confidence is obtained to evaluate the classifier.

For example figure 1 and 2 show the decision bound-

aries along with the data points in the Euclidean space,that

were created by GPs of the wavelet transformed input data

of recording 223. It is clearly observable, that high con-

fidence regions are produced in the input space where the

density, of the training data of each class, is high.

Table 1 shows the performance of the classifier, with op-

timized hyperparameters, in terms of the accuracy the test

data set achieves. The first column of each transform in-

dicates the accuracy the classifier achieves with a thresh-

old of 0.5. The other two columns show the accuracy of

the classifier when a threshold of 0.8 is used and the pro-

portion of data that have been assigned with probabilities

higher than 0.8.

Each recording was trained and tested four times. The

beats in each recording was separated into four disjoint

subsets, preserving the initial prior probabilities of each

class. In each run three data subsets were used for training
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Figure 1. Decision Boundaries of recording 233(contour

plot) - Scatter plot; where x(1), x(2) represent the features

obtained from the wavelet transform after PCA

and one for testing. The accuracy each recording achieves

in table 1 is the mean accuracy of the four trainings.

Figure 3 illustrates the effect the increase of the thresh-

old has on the accuracy (solid line), and the proportion of

the test data set, that has been assigned probabilities higher

than the threshold (dashed line). It is noticed that the accu-

racy remains high but the proportion of the data that have

been assigned with probabilities higher than the value of

the threshold, decreases as the threshold increases.

4. Discussion and conclusions

In this paper we propose the use of Gaussian Processes

for automatically classifying ECG signals into normal and

ventricular beats. Furthermore, Automatic Relevance De-

termination was applied for the identification of the fre-

quencies that were most relevant for classification, and

then for the optimisation of the hyperparameters of the co-

variance function. A different methodology was followed

for the features extracted by the wavelet transform of the

raw ECG signal, where first PCA was applied to reduce

the dimensionality of the inputs, and then ARD was used
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Figure 2. Decision Boundaries of recording 233
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Figure 3. Model Accuracy as the threshold increases -

Percent of test data set larger than the threshold

again to optimise the hyperparameters. On both types of

features obtained, results indicate that Gaussian Processes

are shown to perform with high precision, with an aver-

age accuracy above 90%. Moreover, a measure of perfor-

mance exceeding 95% of accuracy is achieved, by consid-

ering only posterior probabilities of high confidence above

a certain threshold.

Future work will emphasize on the use of different fea-

tures for classifying beat hearts with Gaussian Processes,

as well as the investigation of applying different approx-

imation methods to the non-Gaussian likelihood. More-

over, future work will focus on extending the predictions

to different subjects.
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