
Probability Trends in the Assessment of 

Cardiovascular Autonomic Fluctuations during Cold 

Pressor Tests 

 
F Ng

1
, S Wong

2
, P Gomis

3
, J Lim

1
,  

G Passariello
2
, JM Ansermino

1
 

 
1
University of British Columbia, Vancouver, Canada 

2
Universidad Simón Bolívar, Caracas, Venezuela 

3
Universitat Politècnica de Catalunya, Barcelona, Spain 

Abstract 

Eighteen healthy volunteers between 23 and 53 years 

of age (mean age 34.9  ± 9.8 years) were exposed to CPT 

while continuous ECG recordings were collected. HRV 

parameters, including root mean square of successive 

differences (RMSSD) and low frequency (LF) and high 

frequency (HF) components, were obtained during 

baseline and each stage of CPT using an autoregressive 

(AR) model with Burg’s method to evaluate short 

windows of observation while preserving adequate 

frequency resolution. HRV parameters obtained during 

immersion of the hand in cold water, after withdrawal, 

and every 3 minutes after withdrawal were compared to 

baseline parameters. A probability trend was updated 

every 10 seconds for each parameter and p < 0.05 was 

considered significant. Preliminary results show that 

probability trends from RMSSD and HF provide 

consistent and prompt information about the sympathetic 

activation. These results could be applied in  the setting 

of anesthesia and intraoperative monitoring, where 

sympathovagal imbalances can provide an early warning 

of physiological stress and thus facilitate timely 

interventions, 

 

1. Introduction 

The Cold Pressor Test (CPT) is used to activate pain 

by the inmmersion of one hand on ice-cold water. This 

well known instrument is capable of inducing a 

reproducible sympathetic activation by way of 

nociceptive and temperature receptors. Heart Rate 

Variability (HRV) analysis has been widely used to 

interpret autonomic activity but its clinical utility is 

limited when acute and transient phenomena are assessed. 

To overcome this limitation we propose a probabilistic 

method to analyze brief changes in the sympathovagal 

balance during autonomic provocative tests. 

The normal response to exposure of a limb to cold 

water involves reflex arteriolar vasoconstriction 

producing an increase in blood pressure and cardiac 

output triggered by cutaneous pain receptors. Increased 

blood pressure is a response to enhanced sympathetic 

activity expressed as an increase in vascular resistance. 

The initial increase in heart rate is blunted by beta 

adrenoreceptor blockers suggesting that sympathetic 

rather than parasympathetic outflow mediates this 

response [1].    

When patients are under acute stress, such as surgical 

or procedural noxious stimulation, the parasympathetic 

tone tends to be depressed expressing a decrease in HF 

activity. In the setting of anesthesia and intraoperative 

monitoring, the development of an instrument able to 

provide real time information about the Autonomic 

Nervous System (ANS) state at different stages of any 

procedure would result in improved monitoring and 

safety for patients undergoing diagnostic or therapeutic 

interventions. However, real-time analysis of HRV can 

be particularly challenging. Retrieving temporal and 

frequency domain parameters as described by classical 

methods involves exhaustive conditioning of the HRV 

signal, limiting its use to research purposes [2].  

This study explores a probabilistic approach that 

analyzes changes of HRV parameters obtained by an 

autoregressive model technique using Burg´s methods to 

evaluate very short windows of observations while 

preserving sufficient frequency resolution [3,4]. These 

HRV parameters are constantly compared to a baseline 

state, and a probability trend is updated during 

provocative maneuvers.  

 

2. Methods 

 Parametric modeling analysis such as the AR 

model using the Burg method or maximum entropy 
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method provides high-resolution spectral estimation of 

short-term signals as the RR windowed segments 

analyzed in this work [3]. The maximum entropy method 

(MEM) implicitly extends the correlation function of the 

signal, extrapolating it beyond the observation interval in 

order to maximize the entropy of the windowed signal 

characterized by the extrapolated autocorrelation 

sequence [4,5]. Burg’s AR estimation method is 

equivalent to MEM and estimates the parameter of an AR 

model by minimizing the forward and backward 

prediction errors using the least squares method, to 

satisfy the Levinson recursion [5,6].   

2.1. Study population 

Eighteen healthy volunteers were exposed to CPT while 

continuous ECG recordings were collected. After 

approval by the hospital Research Ethics Board, all 

participants provided informed consent to participate in 

the study after discussing potential risks with the study 

coordinator before undergoing a battery of provocative 

tests. No remuneration was provided to participants in 

this trial. Participants’ age ranged from 23 to 53 years old 

(mean age 34.9 ± 9.8 years) and weight ranged from 47 

to 105 Kilograms (mean weight 71 ± 15.1 Kilograms). 

Patients on regular prescribed medications or with a 

documented history of cardiovascular or neurological 

diseases were excluded from this study. 

2.2. Signal acquisition and provocative 

tests 

All signals were acquired in an operating room at British 

Columbia Children’s Hospital using a Datex-Ohmeda 

S/5® monitor system from GE®. ECG, capnographic, 

and flow signals were collected simultaneously in all 

patients. For the purposes of this study, only ECG signals 

were analyzed. Patients underwent a standardized 

sequence of provocative tests such as the Head up Tilt 

Table Test (TTT) and the Cold Pressor Test. Only Cold 

Pressor Tests procedure were analyzed in this work.  

Patients were asked to perform a CPT that ended after 

180 seconds or when the subject was no longer able to 

tolerate the discomfort while keeping their non dominant 

hand in water kept at 4°C. The water used for the CPT as 

well as the environment temperatures were controlled in 

each test. All tests followed a period of baseline 

acquisition. Once subjects withdrew their hands from the 

cold water, a Pain Rating Scoring was reported every 3 

minutes until the completion of the test (Table 1). Pain 

decreases significantly three minutes after CPT 

(p<0.001); however, these values show substantial 

variability.  

\ 

Table 1. Pain rating following the completion of the test      

(1 least -10 most). 

Subject 0 min 3 min 

1 9.0 9.8 

2 4.2 1.4 

3 7.0 1.5 

4 6.0 3.1 

5 7.3 2.5 

6 7.5 0.0 

7 3.8 0.0 

8 6.3 4.3 

9 6.3 1.0 

10 9.0 3.2 

11 7.0 1.4 

12 1.8 0.0 

13 0.6 0.0 

14 4.8 0.0 

15 6.0 2.5 

16 7.7 2.5 

17 5.0 1.5 

18 6.5 0.9 

mean± sd 6.0±2.0 2.0±2.3 

 

 

2.3. Spectral HRV analysis 

RR signals were obtained using a noise-robust wavelet-

based algorithm for R-wave detection and QRS wave 

delineation [7]. In order to optimize the detection of 

normal sinus beats, artifacts and ectopic beats were 

removed from the RR signal using a 5-beat sliding 

window algorithm that rejected any beat with an interval 

difference more than 15% of the window mean beats. 

Processing RR signals included the removal of its mean 

value and regular spaced resampling at 2 Hz after 

interpolating the signal with cubic splines. The AR model 

order was chosen using the Broersen’s combined 

information criterion (CIC) [8], selecting a model order 

of 16 for all signals. This model’s order and resampling 

frequency follow recommendations from previous studies 

for short term RR trends analyses [9, 11]. Short term 

HRV analyses were performed using a sliding window 60 

seconds of  length and continuously shifting one sample 

each time in all cases. The spectral HRV indices 

computed from the Power Spectral Density (PSD) were 

the average power in the low frequency band (LF: 0.04 to 

0.15 Hz), in the high frequency band (HF: 0.15 to 0.4 

Hz), and the LF/HF ratio. For LF and HF, absolute values 

(ms2) and normalized units were used. The LF in 
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normalized units (LFn= LF/(LF+HF)) and LF/HF ratio 

(LFr) were calculated from their original absolute power 

values. Additionally, the following time domain variables 

were computed for each RR interval signal: average heart 

rate (HR), standard deviation of RR interval signal (SD), 

and square root of the mean square differences of 

successive RR intervals (RMSSD). Four 1-minute stages 

were considered under the following conditions: Stage 1, 

supine position (basal ); stage 2, hand in; stage 3, hand 

out ; stage 4, three (3)  minutes after hand out. 

2.4. p-trend analysis 

ANS changes are traditionally evaluated by averaging 

parameters over 2-3 minutes; by means of this proposed 

analysis, temporal trends of HRV parameters can be 

updated as often as every second. Our study explores a 

probabilistic approach that analyzes changes in HRV 

parameters obtained. These HRV parameters are 

continuously compared to a baseline state, and a 

probability trend is updated during in the observations 

window. In p-trend analysis, values are compared every 1 

seconds to baseline values during the CPT . 

3. Results 

Data were considered as means ± standard deviation 

for each parameter at each stage (Table 2).  . Wilcoxon 

rank sum test was used to determine the significance of 

the differences between stages.  

 

 

Figure 1. Mean, p-value and boxplots for HF This 

parameter decrease during CPT (stages 2, 3, and 4). 

Mean Values, p-trends and boxplots trends for HF, 

rmssd and LFn are presented respectively in figures 1,2 

and 3. Differences between each stage and baseline were 

particularly significant for HF and RMSSD. These values 

decrease significantly during stages 2 (p<0.05). LFn 

increases during CPT but without statistical significance.  

Table 2.  Mean values for stages 1, 2 and 3. 

Variable Basal  Hand in Hand out 
RR 803±127 802±121 803±126 

LFn 0.65±0.21 0.78±0.11 0.77±0.11 

HF 767±505 371±288 563±334 

LF 2485±3065 1495±1576 2685±2493 

rmssd 36.0±17.2 20.8±9.2 29.7±13.8 

 

 

Figure 2. Mean, p-value and boxplots for rmssd. This 

parameter decrease during CPT (stages 2, 3, and 4). 

 

Figure 3. Mean, p-value and boxplots for LFn. This 

parameter increases during CPT (stages 2, 3, and 4). 
 

4. Discussion 

Our preliminary analysis was performed with 18 

983



 

 

volunteers. It showed that pain sensation after the initial 

three minutes of recovery decrease in CPT. This finding 

is consistent with the evolution of HRV parameters (HF, 

rmssd and LF). parasympathetic withdrawal  (HF and 

rmssd) and the  sympathetic reactivation (LFn) after the 

CPT . The high variability of HRV parameters is a big 

defy for this technique in clinical monitoring purposes, 

also the complex interaction between, both sympathetic 

and parasympathetic drives, might need not necessarily 

HRV parameters to improve the identification of 

autonomic changes. Nonetheless, it is always useful to 

define the least amount of parameters that could help the 

clinician identify this condition in his everyday practice.  

The main outcomes of this study is the use of a 

probabilistic trend to validate the ANS changes during 

CPT. Preliminary results show that trends from RMSSD 

and HF are consistent and reliable instruments capable of 

providing information about ANS fluctuations close to 

real time. These results are promising for pain perception 

and its relationship with ANS changes. A larger database  

is needed to define parameters that could be applied in  

the setting of anesthesia and intraoperative monitoring, 

for a real time instrument that alerts the physician during 

intraoperative intervention. 
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