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Abstract

Discrimination of Ventricular Tachycardia (VT) from

Supra-Ventricular Tachycardia (SVT) remains a major

challenge for appropriate therapy delivery in Implantable

Cardioverter Defibrillators (ICDs), especially in single

chamber devices. We propose here a new discrimina-

tion algorithm that analyzes, with a machine learning ap-

proach, the morphology of a two-dimensional representa-

tion of both a far-field and a near-field ventricular sensing

channel. Features extracted from this representation allow

comparisons between curves. Thus, arrhythmia discrimi-

nation is performed by comparing an arrhythmia curve to

a reference curve.

A statistical classifier was trained on a private database

and tested on the standard Ann Arbor Electrogram Li-

braries. Our discrimination algorithm demonstrated high

sensitivity and specificity for VT/SVT discrimination. The

requirements of this algorithm make it appropriate for im-

plementation in the simplest ICD system.

1. Introduction

Discrimination of Ventricular Tachycardia (VT) from

Supra-Ventricular Tachycardia (SVT) remains a major

challenge for appropriate therapy delivery in Implantable

Cardioverter Defibrillators (ICDs), especially in single

chamber devices where the atrial signal is not available.

Unlike SVT, VT is a life-threatening arrhythmia that may

lead to sudden death unless an appropriate shock is deliv-

ered. Conversely, inappropriate shocks are very painful

and stressful for patients and can also trigger a life-

threatening tachyarrhythmia. The Madit II study [1] shows

that inappropriate shocks occurred in 11.5% of the prophy-

lactic ICD (single and double chamber devices) patients

and accounted for 31.2% of the total shock episodes. There

is clearly a need for further improvements in arrhythmia

discrimination.

The discrimination in ICDs is performed from endocar-

dial measurements of the electrical activity of the heart,

named electrograms (EGMs). Historically, only time inter-

vals extracted from EGMs were used for diagnosis. In the

last decade, an additional analysis of the shape of a single

EGM channel resulted in improved performances [2–4].

We propose in this paper a morphology discrimination al-

gorithm based on a new two-dimensional representation of

both a far-field and a near-field right ventricular sensing

channel, available in standard ventricular leads (Figure 1).

Figure 1. The simplest ICD system: a single-chamber ICD

with a single-coil lead. The distal (RVtip) and the proxi-

mal (RVcoil) electrode are positioned in the right ventri-

cle, the can is implanted in the left sub-clavicular position.

The two EGM configurations used in this study are RVcoil-

RVtip and RVcoil-Can.

2. Methods

2.1. Overview of the algorithm

The algorithm is based on the comparison between a

Normal Sinus Rhythm (NSR) template beat and an ar-

rhythmia beat (Figure 2). The NSR beat is commonly ob-

tained by averaging m consecutive slow beats. A morpho-
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logical description of this reference beat is subsequently

computed based on a new two-dimensional representation.

When an arrhythmia is detected, the cardiac cycles are

described in the same way as the reference beat. Morpho-

logical features are computed in order to compare each ar-

rhythmia beat to the reference. The decision is based on

a statistical classification of these features together with

rhythmological features.

Figure 2. Overview of the morphology algorithm

2.2. SPOT curve representation

The two-dimensional representation of EGMs is called

“Spatial Projection Of Tachycardia”(SPOT). The SPOT

curve of a cardiac cycle is the plot of the amplitude of the

far-field sensing signal versus the amplitude of the near-

field sensing signal, with time as a parameter. However, a

SPOT curve does not correspond to the entire cardiac cy-

cle, but to a significant portion of a heartbeat centered on

the R wave (typically 80 ms).

Figure 3 shows three SPOT curves for the same patient,

one during an NSR, one during a VT and one during an

SVT. Our discrimination algorithm consists of comparing

each arrhythmia SPOT curve with a reference one. The

underlying assumption is that, for a given patient, the mor-

phology of an SVT SPOT curve is similar to that of the

reference curve constructed from normal EGMs, while the

SPOT curve for a VT is significantly different: this is justi-

fied by the fact that the electrical signals pertaining to nor-

mal heartbeats and to SVT heartbeats originate from the

atria and follow the same electrical conduction pathway to

the ventricles, while VT electrical signals, originating from

the ventricles, have different activation patterns, leading to

a change in the morphology of the signals measured by the

electrodes. Figure 3 illustrates this phenomenon: the SVT

SPOT curve is similar to the reference SPOT curve up to a

scale factor, while the VT SPOT curve is very different in

direction and shape.

Figure 3. Three SPOT curves for a single patient. EGMs

were sampled at 500 Hz.

2.3. Description of a single SPOT

For implementation in an ICD, a simple and inexpensive

method is required to describe a SPOT curve. As can be

seen in Figure 3, a difference in direction or shape is a dis-

criminant factor. Therefore, two geometrical descriptors

are extracted from each curve in this new representation:

the velocity vector and the curvature at each point. Let

b(t) be the amplitude of the bipolar near-field signal at time

t and u(t) the amplitude of the unipolar far-field signal at

time t. Velocity vectors are obtained by using a discrete ap-

proximation of the derivatives at each point for each EGM

channel. We denote by u′ and b′ the time derivatives of u

and b respectively. Let V(t) = (b′(t), u′(t)) be the veloc-

ity vector of a SPOT curve at time t.

The Euclidean norm of each velocity vector V(t) is

computed as:

N(t) =
√

b′2(t) + u′2(t)

Second derivatives are computed similarly to first

derivatives. The curvature, which is the inverse of the ra-

dius of curvature, is then computed as follows:

C(t) = (b′(t)2+u′(t)2)
3

2

u′′(t)b′(t)−b′′(t)u′(t)

The curvature can increase dramatically, especially at

points where the velocity is small. For that reason, a

weighted curvature Ĉ is used. The weight at time t cor-

responds to a power of the norm of the velocity N(t).

Figure 4 illustrates this description based on the SPOT

curves of Figure 3: each SPOT curve is described at each

point by the direction of the velocity vector (Figure 4a), its

norm (Figure 4b) and the weighted curvature (Figure 4c).
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Figure 4. Description of SPOT curves

2.4. Comparison between arrhythmia and

NSR SPOT curves

In order to discriminate between VT and SVT, a com-

parison between each current arrhythmia SPOT curve and

the reference SPOT curve must be performed. Therefore,

three candidate features are computed from the previous

descriptors.

The first feature is the average angle of the relative ve-

locity vectors AngV . The angle α(t) of the relative veloc-

ity vectors at time t is given by:

α(t) = arccos

(

< Vref (t),Vtest(t) >

Nref (t)Ntest(t)

)

= arccos

(

b′ref (t)b′test(t)+u′
ref (t)u′

test(t)

Nref (t)Ntest(t)

)

where 0 < α(t) < π.

Let n be the number of points of each SPOT. Then,

AngV is defined as:

AngV = 1
n

n
∑

t=1
α(t)

It is known that electrodes inside the heart are essentially

motionless, so that a rotation between two SPOT curves is

a discriminant factor. Such a rotation would be reflected

by AngV .

The correlation coefficient CN between the norms of

the velocity is the second descriptor:

CN =

n
∑

t=1

Nref (t)Ntest(t)

‖Nref‖‖Ntest‖

Finally, the correlation coefficient CC between the cur-

vatures can be computed as:

CC =

n
∑

t=1

Ĉref (t)Ĉtest(t)

‖Ĉref‖‖Ĉtest‖

The amplitude of the signal may vary, so that the rep-

resentation must be size-invariant. The correlation coeffi-

cient complies with this requirement.

2.5. Arrhythmia discrimination with a ma-

chine learning approach

As illustrated by previous clinical trials, morphology

algorithms combined with rhythm discriminators perform

better than morphology algorithms alone. For that reason,

two additional timing descriptors are added to the set of

features: the cardiac frequency BPM and the standard de-

viation StdRR of the RR intervals during the arrhythmia,

estimated from a few cycles preceding the current beat.

A statistical classifier is subsequently trained on a set

of arrhythmias. In order to reduce the complexity of the

classifier (critical when the training set is small), feature

selection is performed to discard non-informative features.

First, features are ranked by Gram-Schmidt orthogonaliza-

tion [5, 6]. Then, the random probe method [7] provides

an estimate of the probability for a feature to be irrelevant,

and allows keeping the probability of false positive (i.e.

the probability of retaining a feature although it is not in-

formative) below a predetermined limit. This results in the

selection of p features.

The classifier is intended to divide the feature space

into two regions, providing the equation E(x) = 0 of

the boundary surface, where x is the feature vector whose

components are the values of the selected features. The

value of sgn(E(x)) indicates whether the beat described

by vector x belongs to one class or the other. This pro-

cedure is an offline procedure and is done only once on

a fixed training data set. Then, the sole equation of the

boundary surface is downloaded into the ICD; the latter

computes sgn(E(x)) for each beat when an arrhythmia is

detected.

A robust type of statistical classifier is used: a Support

Vector Machine (SVM) classifier [8] with a gaussian radial

basis kernel. In this case, the equation of the boundary

surface is given by:

E(x) =
l

∑

i=1

αi exp

(

−
(‖xi−x‖2)

2σ

)

+ b = 0

where l is the number of support vectors; xi are the p-

dimensional support vectors; αi and b are parameters esti-

mated by the statistical learning, and σ is a fixed parame-

ter chosen by cross-validation during model selection. The

arrhythmia is classified as SVT if E(x) < 0, as VT other-

wise.
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3. Results

Electrograms from two different databases were used in

this study. All arrhythmias were induced during electro-

physiological studies. The sampling rate used for evalua-

tion was 500 Hz.

Feature selection, model training and model selection

were performed from a private database including 29 in-

duced VT and 19 induced SVT from 32 patients (57 ± 15.5

years, 87.5% men, 50% Ischemic Heart Disease). With a

risk of keeping a feature although it is irrelevant of 10%,

AngV , BPM , CN and StdRR are selected among the

five candidates. The procedure provided a classifier with

96.6% sensitivity (1 FN) and 94.7% specificity (1 FP) on

that database. It was tested on the standard Ann Arbor

Electrogram Libraries (AAEL): 64 VT and 7 SVT from

41 patients (61.9 ± 13.2 years, 82.9% men, 73.1% Coro-

nary Artery Disease). On those fresh data, the classifier

had 96.9% sensitivity (2 FN) and 85.7% specificity (1 FP).

Results are shown in table 1.

It is important to notice that the entire arrhythmia

databases could not be used because a spontaneous sinus

rhythm was not available for every patient.

Table 1. Performances of the SVM classifier

Sensitivity Specificity

% (FN) % (FP)

Training Set 96.6 (1) 94.7 (1)

Test Set 96.9 (2) 85.7 (1)

4. Discussion

4.1. Limitations

The problem of template updating was not addressed

yet but we did check the posture-invariance of our repre-

sentation. Recordings of NSR were performed for 9 pa-

tients in different postures (sitting, standing, supine, prone,

left/right lateral decubitus). For one patient, the same

recordings were performed 4 months later. These prelimi-

nary results show that our features are independent of pos-

ture and that template updating must be performed peri-

odically. However, more recordings must be analyzed for

substantiating those claims.

Another limitation is the fact that all arrhythmias used

for validation were induced. Therefore, the criterion of

sudden onset could not be evaluated.

Finally, there is, unfortunately, no available results on

standard databases for comparing our algorithm to other

morphology algorithms. However, the simultaneous use

of two different types of EGM guarantees a gain of infor-

mation compared to other algorithms.

4.2. Conclusion

The SPOT-based discrimination algorithm, applied to

standard databases of tachyarrhythmias, demonstrated

high sensitivity and specificity for VT/SVT discrimination.

According to this study, velocity vectors seem to be suffi-

cient for morphological characterization of SPOT curves.

The computational requirements of this algorithm make

it appropriate for implementation in every ICD system

within the framework of a prospective clinical evaluation.
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