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Abstract

The Poincaré plot of RR intervals is one of the most

popular techniques used in heart rate variability (HRV)

analysis. The standard descriptors SD1 and SD2 of

Poincaré plot represents the distribution of signal by quan-

tifying spatial (shape) information. The present study pro-

poses a novel descriptor, Complex Correlation Measure

(CCM), to quantify changes in temporal structure of points

of Poincaré plots. To compare performance of CCM with

standard Poincaré descriptor SD1 and SD2, we have cal-

culated ROC area for each descriptor between Normal Si-

nus Rhythm (NSR) and Congestive Heart Failure (CHF)

subjects. The RR intervals of 54 NSR subjects and 29 CHF

subjects from Physionet NSR and CHF database are used.

The p value obtained from chi-square analysis between two

groups was found significant only for CCM (p=9.07E-

14). The largest ROC area between two groups was for

CCM (0.92) which indicate that CCM can be used as a

significant feature for detecting pathology.

1. Introduction

In general, Poincaré plot is a two dimensional plot con-

structed by plotting consecutive points of RR time-series

on phase space or cartesian plane [1]. It has been shown

to reveal patterns of heart rate dynamics resulting from

nonlinear processes [2, 3]. It is extensively used for qual-

itative visualization of physiological signal. It is com-

monly applied to asses the dynamics of heart rate variabil-

ity (HRV) [2, 4–7]. Tulppo et. al. [2] fitted an ellipse to

the shape of the Poincaré plot and defined two standard

descriptors of the plot SD1 and SD2 for quantification

of the Poincaré plot geometry. These standard descrip-

tor represent the minor axis and the major axis of the el-

lipse respectively as shown in figure 1. The description of

SD1 and SD2 in terms of linear statistics, given by Bren-

nan et. al. [3], shows that the standard descriptors guide

the visual inspection of the distribution. In case of HRV,

it reveals a useful visual pattern of the RR interval data

by representing both short and long term variations of the
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Figure 1. A standard Poincaré plot of RR intervals of a

healthy person (N=2000).

signal [2, 3]. In [8], the authors examined the theoreti-

cal demand with different lags and showed that there is a

curvilinear relationship between lag Poincaré plot indices

for normal subjects, which is lost in Congestive Heart Fail-

ure (CHF) patients. Therefore, measurement from a series

of lagged Poincaré plots (multiple lag correlation) can po-

tentially provide more information about the behavior of

Poincaré plot than the conventional lag-1 plot measure-

ments [9].

Two basic descriptors of the plot are SD1 and SD2 and

their mathematical derivation can be found in [3]. The

line of identity is the 450 imaginary diagonal line on the

Poincaré plot and the points falling on the imaginary line

has the property RRn = RRn+1. SD1 measures the

dispersion of points perpendicular to the line of identity,

whereas SD2 measures the dispersion along the line of

identity. Fundamentally, SD1 and SD2 of Poincaré plot

is directly related to the basic statistical measures, standard

deviation of RR interval (SDRR), and standard deviation

of the successive difference of RR interval (SDSD), which

is given by the relation shown in equation 1 and equation 2.

SD12 = 1

2
SDSD2 (1)
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SD22 = 2SDRR2 − 1

2
SDSD2 (2)

The above equation sets are derived for unit time de-

lay Poincaré plot.Researchers have shown interest in plots

with different time delays to get a better insight in the time-

series signal. Usually the time delay is multiple of the cy-

cle length or the sampling time of the signal [10].

The lack of temporal information is the primary limita-

tion of the standard descriptors of the Poincaré plot. SD1
and SD2 represents the distribution of signal in 2D space

and carries only spatial (shape) information. It should be

noted that many possible RR interval series result in iden-

tical plot with exactly similar SD1 and SD2 values in

spite of different temporal structure. Therefore, to reflect

temporal variation, we developed a descriptor to incorpo-

rate multiple lag correlation information, which we call as

Complex Correlation Measure (CCM). The proposed de-

scriptor is not only related to the standard descriptors, but

it also embeds temporal information, which can be used in

quantification of the temporal dynamics of the system. In

this paper, we aim to evaluate all three descriptors (SD1,

SD2 and CCM ) of the Poincaré plot of RR intervals, and

compare their performance in differentiating CHF from

normal subjects.

2. Methods

2.1. Subjects

In order to validate the proposed measure - CCM , two

case studies were conducted on RR interval data. The data

from MIT-BIH Physionet database are [11] used in the ex-

periments. Fewer attempts are made by medical fraternity

to utilize Poincaré plot to evaluate CHF. In this study, we

have analyzed the performance of CCM and compared

it with that of SD1 and SD2 for recognizing congestive

heart failure using HRV signal.

In this study, we have used 54 long-term ECG record-

ings of subjects in normal sinus rhythm (30 men, aged 28.5
to 76, and 24 women, aged 58 to 73) from Physionet Nor-

mal Sinus Rhythm database [11]. Furthermore, we have

also used 29 long-term ECG recordings of subjects (aged

34 to 79) with CHF (NYHA classes I, II and III) from Phy-

sionet Congestive Heart Failure database.Same ECG ac-

quisition with beat annotations were used as discussed in

previous case study. Similar to previous case study, lag-1

Poincaré plots were constructed for both normal and CHF

subjects and the new descriptor CCM was computed as

per traditional descriptors.

2.2. Complex correlation measure (CCM )

CCM measures the point-to-point variation of the sig-

nal rather than gross description of the Poincaré plot. It is

computed in a windowed manner which embeds the tem-

poral information of the signal. A moving window of three

consecutive points from the Poincaré plot are considered

and the temporal variation of the points are measured. If

three points are aligned on a line then the value of the vari-

ation is zero, which represents the linear alignment of the

points. Moreover, since the individual measure involves

three points of the two dimensional Poincaré plot, it is

comprised of at least four different points of the time se-

ries for lag m = 1 and at most six points in case of lag

m ≥ 3. Hence the measure conveys information about

four different lag correlation of the signal. If Poincaré plot

is composed of N points then the temporal variation of

the plot, termed as CCM , is composed of all overlapping

three point windows and can be calculated as:

CCM(m) =
1

Cn(N − 2)

N−2∑

i=1

‖A(i)‖ (3)

where m represents lag of Poincaré plot, A(i) represents

area of the i-th triangle and Cn is the normalizing constant

which is defined as, Cn = π ∗ SD1 ∗ SD2, represents

the area of the fitted ellipse over Poincaré plot. The length

of major and minor axis of the ellipse are 2SD1, 2SD2,

where SD1, SD2 are the dispersion perpendicular to the

line of identity (minor axis) and along the line of identity

(major axis) respectively.

Since RR intervals are discrete signal, the autocorrela-

tion at lag m = j can be calculated as:

γRR(j) =
N∑

n=1

RRnRRn+j (4)

Finally, CCM(m) can now be expressed as a function of

autocorrelation at different lags. Hence,

CCM(m) = F [γRR(0), γRR(m − 2), , γRR(m − 1),

γRR(m + 1), γRR(m + 2)]

where, γRR(m) represents the lag-m autocorrelation

of the RR interval time series. In the above equation

CCM(m) represents the point-to-point variation of the

Poincaré plot with lag m as a function of autocorrelation

of lags 0, m − 2, m − 1, m + 1 and m + 2. This supports

that CCM is measured using multiple lag correlation of

the signal rather than single lag. For the conventional lag-

1 Poincaré plot CCM(1) can be represented as:

CCM(1) = F [γRR(−1), γRR(0), γRR(2), γRR(3)]

2.3. ROC area analysis

In order to provide the discriminative performance of

all measures, receiver-operating curve (ROC) analysis was
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used [12], with the areas under the curves for each fea-

ture represented by the ROC area. A ROC area value of

0.5 means that, the distributions of the features are similar

in two groups with no discriminatory power. Conversely, a

ROC area value of 1.0 would mean that the distributions of

the features of the two groups do not overlap at all. ROC

plots are used to gauge the predictive ability of a classi-

fier over a wide range of threshold values. A threshold

value was applied such that a value below the threshold

was assigned into one category whereas a value equal to

or above the threshold was assigned into another category.

ROC curves were plotted using results to examine quali-

tatively the effect of threshold variation on the classifica-

tion performance. The area under ROC curve was approx-

imated numerically using the trapezoidal rules [12] where

the larger the ROC area the better the discriminatory per-

formance.

2.4. Statistical analysis

In this study we have used Chi-square test to determine

whether the descriptors values are independent from each

other for NSR and CHF group. It suits our case studies as

the sample size is small.

3. Results

The box-whiskers plot of all descriptors for normal and

CHF subjects are shown in Figure 2. Figure 2A, represents

BW plot for log(SD1) and it is apparent that boxes (in-

terquartile range) of normal and CHF subjects are overlap-

ping. The BW of normal subjects is completely overlapped

with the box and whisker (lower quartile) of the CHF sub-

jects. In figure 2B, the box-whiskers plot of log(SD2)

is shown and boxes are apparently non-overlapped. But

the BW plot of normal subjects mostly overlaps with the

whisker (upper quartile) of the CHF subjects. In figure 2C,

the BW plot of log(CCM ) is shown to be non-overlapping

and only the upper quartile (box) and whisker of normal

subjects are overlapped with the whisker (lower quartile)

of the CHF subjects.

The values of the mean and the standard deviation for

both types of subjects are shown in table 1. Last row

represents the p value obtained from Chi-square analysis

between two groups for SD1, SD2 and CCM . Though

SD2 and CCM shows similar difference among the mean

of two subject groups, the standard deviation of CCM is

lower which concentrates the distribution of CCM values

around mean comparing with that of SD2. As a result

we obtained significant p value from chi-square analysis

between Normal and CHF subject groups only for CCM

as shown in table 1. Maximum ROC area, 0.92. for dif-

ferentiating CHF from NSR groups was found for CCM .

Though ROC area for SD2 was 0.90, the p values calcu-
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Figure 2. The distribution of descriptors are shown

using Box-whiskers (BW) plot (without outliers) of (A)

log(SD1), (B) log(SD2) and (C) log(CCM) for Normal Si-

nus Rhythm (NSR, n = 54) and Congestive Heart Failure

(CHF, n = 29) subjects.

lated using Chi-square test was insignificant. The lowest

ROC area obtained for SD1 was 0.71.

Table 1. Mean ± Standard deviation of SD1, SD2
and CCM for normal sinus rhythm (NSR) and conges-

tive heart failure (CHF) subjects. ROC (receiver-operating

characteristic) area and p value of Chi-square analysis are

given in the last two rows.

SD1 SD2 CCM

NSR 0.03 ± 0.02 0.19 ± 0.04 0.05 ± 0.03

CHF 0.04 ± 0.02 0.11 ± 0.06 0.14 ± 0.06

ROC area 0.71 0.90 0.92

p value 3.57E-02 4.62E-02 6.22E-08
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4. Discussion and conclusions

The main motivation for using Poincaré plot is to visu-

alize the variability of any time series signal. In addition to

this qualitative approach, we propose a novel quantitative

measure, CCM , to extract underlying temporal dynamics

in a Poincaré plot. Both SD1 and SD2 are second order

statistical measures [3], which are used to quantify the dis-

persion of the signal perpendicular and along the line of

identity respectively. Moreover, SD1 and SD2 are func-

tions of lag − m correlation of the signal for any m lag

Poincaré plot. In contrast, CCM is a function of multiple

lag (m − 2, m − 1, m, m + 1, m + 2) correlations.

In the presented case study, we have shown as to how

Poincaré plot can be used to characterize CHF subjects

from normal subjects using RR interval time series. Com-

pared to SD2, SD1 and CCM values were found to be

higher in CHF subjects. This findings might indicate that

the short term variation in HRV is higher in CHF subjects,

however, the long term variation is reduced. Since CCM

captures the signal dynamics at short level (i.e, 3 points of

the plot), it appears to be affected by short term variation

of the signal in CHF subjects. In the case of recognition of

CHF subjects, although SD2 showed good result CCM

was found to be more significant as shown in table 1.

Above discussion indicates that CCM is an additional

descriptor of Poincaré plot with SD1 and SD2. This also

implies that CCM is a more consistent descriptor com-

pared to SD1 and SD2. Our primary motivation for de-

tecting pathology with a novel descriptor like CCM rather

than by observing visual pattern is achieved as shown by

the case studies described. In this study, we have not

looked at the physiological interpretation of CCM which

remain to be studied in future.

The proposed Complex Correlation Measure is based on

the limitation of standard descriptors SD1 and SD2. The

analysis carried out confirms the hypothesis that CCM

measures the temporal variation of the Poincaré plot. In

contrast to the standard descriptors, CCM evaluates point-

to-point variation of the signal rather than gross variabil-

ity of the signal. Besides the mathematical definition of

CCM and analyzing properties of the measure, we have

also evaluated the performance of CCM using real world

case studies. In future, CCM may be used as an efficient

feature for pathology detection.
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