
Rhythmometric Analysis of Heart Rate Variability Indices During Long Term

Monitoring
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Abstract

Long-term monitoring of ECG signals is receiving much

attention, still being an open issue how to deal with this

massive source of information. In particular, Heart Rate

Variability (HRV) indices have been widely used to char-

acterize the state of the autonomous regulation of the heart

from 24-hour Holter monitoring, but there is few knowl-

edge on the long-term evolution of HRV indices. A data set

of 7-day Holter recordings in 12 Congestive Heart Failure

(CHF) patients was assembled. For its analysis, an auto-

matic rhythmometric procedure was designed, allowing to

characterize the ultradian and the infradian components,

with possible inclusion of near-periodic fluctuations. A

bootstrap hypothesis test allows us to systematically ad-

just the model architecture for each patient. The temporal

evolution of relevant time-domain (AVNN, SDNN, NN50),

frequency-domain (LF, HF, HFn, LF/HF), and nonlinear

(α1, SampEn) HRV indices, was analyzed. Larger rela-

tive deviations from the daily average pattern were more

clearly observed in nonlinear indices and in NN50. Infra-

dian subharmonic was mostly present in NN50, AVNN, α1,

and SampEn. Long-term monitoring of HRV conveys new

relevant rhythmometric information that can be analyzed

with the proposed automatic procedure.

1. Introduction

Benefits of long-term monitoring are receiving much at-

tention for clinical applications such as the detection of

recurrences after ablation for atrial fibrillation (AF) [1].

Also, 7-day ambulatory ECG monitoring, following acute

stroke or transient ischemic attack, has identified patients

with AF which were not detected with 24-hour record-

ings [2]. Therefore, the clinical usefulness and meaning

of a number of well-known clinical indices is likely to be

analyzed in the long-term monitoring setting.

Heart Rate Variability (HRV) is a relevant marker of the

autonomic nervous system control on the heart, and it has

been widely studied, mostly in 24-hour ECG recordings.

However, there are few studies about the HRV markers in

long-term monitoring. Furthermore, circadian HRV has

been well characterized in healthy and pathological sub-

jects [3], and ultradian (components at frequencies larger

than that corresponding to 24 hours period) rhythms have

also been paid some attention [4], but infradian cycles of

HRV have not been yet analyzed with detail.

In order to analyze the long-term variations of HRV in-

dices in time-scales larger than 24-hour, we assemble a

data base of Congestive Heart Failure (CHF) patients 7-day

Holter. To analyze such amount of information we pro-

pose an automatic rhythmometric analysis procedure for

characterizing both the ultradian and the infradian compo-

nents, also accounting for possible narrow-band fluctua-

tions, which uses a bootstrap hypothesis test to select the

model architecture (number and nature of components).

The structure of the paper is as follows. The 7-day

Holter recordings in CHF patients are described, and the

used HRV indices are briefly presented. Next, the pro-

posed rhythmometric analysis method is introduced, and

then it is used to study the rhythmometric parameters of

the patient data base, both in the time and in the frequency

domain. Finally, conclusions are summarized.

2. Data set and HRV indices

A data base of 7-day Holter recordings, from pa-

tients with CHF, were assembled in the Arrhythmia Unit

of Hospital Universitario Virgen de la Arrixaca (Spain).

RR-interval series were used to perform the rhythmometric

analysis. All data were filtered to exclude artifacts and ec-

topic beats. Furthermore, RR-intervals lower than 200 ms

and greater than 2000 ms were excluded, as well as those

which differed more than 20% from the previous and the

subsequent RR-intervals [5]. A population of 21 record-

ings was initially considered. In order to obtain reliable

estimations, those recordings with less than 80% of sinus

beats were ruled out. HRV markers were computed at 15-
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min intervals for each subject, by requiring each 15-min

segment to have more than 80% of sinus beats to compute

the markers. Finally, only those recordings with more than

80% of usable segments were accepted into the data base,

hence obtaining a final population of 12 patients.

A wide number of HRV indices have been proposed in

the literature, which can be roughly divided into three fam-

ilies, namely, time-domain, spectral, and nonlinear meth-

ods. Time-domain methods used were mean of NN inter-

vals (AVNN), standard deviation of NN intervals (SDNN),

and the number of pairs of adjacent NN intervals differing

by more than 50 ms (NN50). Frequency-domain meth-

ods used were power in low and high frequency ranges

(LF and HF), these two markers in normalized units (LFn

and HFn), and the ratio between LF and HF (LF/HF). Fi-

nally, non linear methods used were scaling exponent α1

from Detrended Fluctuations Analysis (DFA), that assess

the short term fractal correlation properties (between 3 and

16 beats), and sample entropy (SampEn), that quantifies

the irregularity of a temporal series.

3. Rhythmometric model selection

Several works (see [6] and references therein) have stud-

ied the circadian variation of a biological parameter us-

ing a physiological time series given by N pairs of values

{ti, yi}
N

i=1, by fitting a set of cosine curves:

yi = M + A0cos(2πf0ti + φ0) + ei (1)

for i = 1, ..., N , where M is the rhythm-adjusted mean or

mesor, A0 is the fitted cosine amplitude, f0 is the funda-

mental frequency (set by the analyst on the basis of empir-

ical physiological information and usually considered as

24 hours), φ0 is the acrophase (lag from a defined refer-

ence timepoint to the crest time in the cosine curve fitted

to the data), and ei is the residual (difference between the

model estimation and the real data). The N values of ran-

dom variable y correspond to the HRV markers to be an-

alyzed. Regarding the fitting regression method, we con-

sidered Least Squares (LS) for simplicity and because it

provides the best estimation (unbiased and minimum vari-

ance) when both normality and homoscedasticity of the

residuals are fulfilled, then being equivalent to the maxi-

mum likelihood criterion.

To analyze long-term recordings, in this paper we ex-

tend the model in (1) to be able to model both ultradian

and infradian rhythms, i.e., frequencies higher and lower,

respectively, than frequency corresponding to 24 hours pe-

riod. On the one hand, to take into account infradian

rhythms, we consider one sub-harmonic term of frequency

f1 = f0/2, given by

I = A1cos(2πf1t + φ1) (2)

For ultradian rhythms, we consider up to five harmonic

components uk, with k = 2, · · · , 6, whose frequencies

correspond to fk = kf0, hence comprising a band between

4 and 24 hours,

U =

6
∑

k=2

uk =

6
∑

k=2

Akcos(2πkf0t + φk) (3)

To take into account near-periodic or narrow band fluc-

tuations, we also consider two additional terms for ev-

ery harmonic and subharmonic. These terms, denoted as

F− and F+, correspond to cosine functions which deviate

from the main frequency ±∆f = ±fs/N , where fs is the

sampling frequency. This way,

F−

k
= A−

k
cos(2π(fk − ∆f)t + φ−

k
) (4)

F+

k
= A+

k
cos(2π(fk + ∆f)t + φ+

k
) (5)

for k = 0, 1, · · · , 6. Taking into account the above compo-

nents, the proposed model is an extension of cosinor model

in (1), given by

y = M + A0cos(2πf0t + φ0) + F−

0 + F+

0

+ I + F−

1 + F+

1 + U +
6

∑

k=2

(

F−

k
+ F+

k

)

(6)

In order to automatically select the spectral components

of interest in (6), and avoiding subjectivity in the model

choice, we propose an automatic method to select the spec-

tral components of interest in each signal. In brief, we start

with the simplest model, corresponding to {Ak = 0}6
k=1

and {A−

k
= A+

k
= 0}6

k=0
(equivalent to (1)), and pro-

gressively include one new term according to its statistical

significance.

To determine if the addition of a new term is statistically

relevant, a paired bootstrap hypothesis test is made, which

considers the mean power of the residuals corresponding

to the previous model vs. the new model. If the test pro-

vides significant improvement with new model, a second

bootstrap hypothesis test compares the new model with an

auxiliary model. The latter has the same number of com-

ponents, but just considering harmonics of f0; i.e., it con-

siders neither sub-harmonics nor fluctuations, but it has the

same number of freedom degrees. If the second test favors

the auxiliary model, then the previous model is selected

as the best fitting; otherwise, the same process is repeated

by considering one additional spectral component. This

procedure allows us to automatically find the best fitting

model with the minimum number of spectral components.

4. Simulations and results

The proposed rhythmometric method was tested by us-

ing synthetic sinusoidal signals, including a different num-

ber of harmonics, subharmonics, and fluctuations. White
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Figure 1. Rhythmometric analysis of long term monitoring in HRV parameters. (a) Examples of populational HRV

indices during 7 days. (b) Populational daily-averaged AVNN and its daily-averaged standard deviation. (c) Time-domain

results. (d) Frequency domain results (LF and HF). (e) Frequency domain results (HF normalized and ratio). (f) Nonlinear

parameters. Time units indicate sampling periods (15 min), time origin at 9AM.

gaussian noise was added (SNR of 20, 10, and 5 dB). The

percentage of right choices achieved by our method was

calculated for each group of signals and for each SNR.

When using signals with harmonic and subharmonic com-

ponents only, the method chose the correct models for all

the tested SNR values. Fluctuations were almost always

correctly detected on harmonic components, but it failed in

some cases on subharmonic components for noisy signals,

due to the fact that the spectral component of subharmonic

f0/2 is very close to spectral component f0. The method

was also tested in square waves, constructed by adding a

number of coefficients of the Fourier Series, yielding si-

nusoidal components with decreasing amplitudes. Again,

signals with harmonics, subharmonic, and fluctuations on

harmonic components, were almost always correctly de-

tected, with few errors found for SNR = 5 dB. Some er-

rors were also found when detecting fluctuations on sub-

harmonics, always lower than 22%.

The rhythmometric procedure was used to analyze some

of the most relevant HRV markers in the long-term mon-

itoring data base, including temporal (AVNN, SDNN,

NN50), spectral (LF, HF, LFn, HFn, LF/HF), and nonlin-

ear (α1, SampEn) indices. All of them were obtained in

time windows of 15 min, yielding a local estimation of

their fluctuations. Figure 1(a) depicts the time evolution

of the populational mean for several HRV indices during 7

days, showing that they can change significantly from one

day to another. In order to characterize their time stabil-

ity, rhythmometric models were adjusted (dashed red line).

Due to the consideration of different kinds of components,

the models were able to account for individual and intrin-

sic day-to-day changes. The populational average daily

profile, together with its standard deviation, were obtained

for each index in each patient (Fig. 1(b) for AVNN). The

daily standard deviation averaged for all the patients can

be considered to account for inter-patient daily variations.

Daily averages and standard deviations (shaded bands)

for HRV markers can be observed in Fig. 1(c-f). The

higher the bands, the higher the populational average inter-

day variation. In temporal parameters (Fig. 1(c)) the bands

were significantly larger for NN50 than for AVNN and

SDNN, due to these two parameters having lower num-

ber of harmonics and of fluctuations included in the model

(see Table 1). Also note the significantly similar profile of

these three time-domain parameters.

Frequency parameters are shown in Fig. 1(d). Their

populational average has a highly similar profile, whereas

the band is larger for HF parameter, indicating it exhibits

larger populational daily variations. With respect to nor-

malized frequency parameters (Fig. 1, HFn (and LFn,

which can be trivially obtained from it) shows not only an

average profile highly similar to the inverse of LF/HF, but

also their standard deviation bands are similar, indicating

their equivalence in terms of information content.

Non linear parameters (Fig. 1(f)) have markedly larger

standard deviation bands, indicating a high number of
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Figure 2. Spectral averages (top) and averaged models

(bottom), AVNN (left) and SampEn (right).

spectral components, specially in the case of α1 exponent.

Also, it is relevant to note that the time profile of the popu-

lational average of α1 is markedly different from the other

HRV indices, which is in coherence with the fact of this

parameter being often an independent marker of the au-

tonomous system state.

Table 1 shows the model parameters given for all the

HRV indices. Percentage of power (relative to the mesor

level) explained by the model was larger in AVNN, NN50,

HF, and Sampen, which indicates that these parameters are

better fitted by a rhythmometric model than the others.

Near-periodic fluctuations were mostly present in NN50,

HF, α1, and Sampen, whereas subharmonics were mostly

present in NN50, AVNN, α1, and Sampen. Although these

two elements (subharmonics and fluctuations) are not al-

ways considered in conventional rhythmometric analysis,

this shows that they can have a relevant explanatory ca-

pacity in the model for some HRV indices, and hence they

should be taken into account. Figure 2 details the spectral

profiles of two indices and their fitted models. Whereas

the rhythmometric models keep some infradian power, the

Table 1. Results for the models: number of harmonics

(Nh, mean ± standard deviation), percentage of patients

with subharmonics (% I) and with fluctuations (% F ) in

their models, and percentage of power explained by the

model (% Pw, m ±std).

Index Nh % I % F % Pw

AVNN 2.2 ± 0.8 33 16.7 53.7 ± 21.4

SDNN 2.2 ± 0.7 8.3 8.3 26.8 ± 17.3

NN50 2.7 ± 1.0 41.7 58.3 39.0 ± 18.5

HF 2.1 ± 0.9 8.3 25 36.4 ± 16.7

LF 2.2 ± 0.4 0 8.3 24.0 ± 18.9

HFn 2.6 ± 1.1 16.7 8.3 23.1 ± 15

LF/HF 2.1 ± 0.6 0 8.3 17.5 ± 10.7

α1 2.6 ± 1.0 25 25 15.3 ± 6.5

SampEn 2.4 ± 0.9 25 25 33.4 ± 17.6

studied infradian component f0/2 is not enough and fur-

ther infradian components should be taken into account in

future studies.

5. Conclusions

Long-term monitoring of HRV can be readily addressed

with the automatic rhythmometric procedure. As shown in

CHF patient data base, daily variations in HRV indices can

be explained by narrow band fluctuations in the ultradian

components, by infradian components, or both. Further

development and analysis will be devoted to assess the in-

fradian HRV content.
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