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Abstract

The membrane kinetics of hunan atrial myocytes as for-

mulated by Courtemanche, Ramirez and Nattel has been

studied while focussing on its progression toward station-

ary solutions during long term repetitive stimulation. An

algorithm is presented for finding the initial settings for all

state variables on the basis of those assumed for the trans-

membrane potential Vm and the intracellular concentra-

tions of the ions involved: [Na+], [K+], and [Ca2+]. The

algorithm may be used for testing the feasibility of yielding

stationarity for any proposed combination of these values,

as well as for any perturbation of the model parameters.

1. Introduction

The membrane kinetics of human atrial myocytes as for-

mulated by Courtemanche, Ramirez and Nattel (CRN) [1]

is a commonly used model in studies of the atrial elec-

tric activity, in particular those investigating the conditions

leading up to –or terminating– atrial fibrillation [2]. A no-

torious problem in such models is the slow drift of all state

variables. One of the explanations proposed in the liter-

ature attributes the drift to the accumulation of charge in

the cell (numerical representation of a membrane patch)

resulting from the applied stimulus current.

To study this hypothesis in the CRN model, simula-

tions (real time: 1 h) were carried out during continuous

stimulation, as well as during episodes with zero stimu-

lus strength. The simulated variables Vm, [Na+]i, [K+]i,
and [Ca2+]i were monitored at 1 s intervals, each involv-

ing 105 time steps (10 µs intervals) of the numerical so-

lution method. The results of the zero stimulus strength

condition are shown in Fig. 1, presented as the percentage

change relative to the initial values of the CRN paper. Note

the changes of up to 1 %. These percentages are similar to

those occurring during a single (stimulated) beat.

The question then arose if, in the absence of a stimu-

lus, stable solutions might be feasible. This question has

been addressed in a paper by Jacquemet [3] and the answer

was affirmative. In fact an infinite number of stable solu-

tions were identified, from which a unique version could
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Figure 1. Time course of the change of the absolute val-

ues of the major state variables indicated, relative to their

initial values; zero stimulus strength. Since Vm is negative,

a positive change corresponds to a shift to more negative

values.

be specified on the basis of prescribing a value for [NS]i,

the total (non-specific) intracellular charge concentration.

In this contribution an algorithm is presented for finding

such combinations of initial settings for these four state

variables that ensure a steady state in the absence of exter-

nal stimuli on the basis of an assumed value of the inter-

cellular charge density. In turn, these then specify initial

values for the remaining ones of the total of the 21 state

variables involved.

In the absence of a stimulus, all state variables remained

constant with respect to their initial values. However, the

response to periodic stimuli still exhibited a residual drift.

This could be effectively solved by introducing a mild

feed-back for [Na+] and [K+], which eases their values to

the constant steady state values following the termination

of the stimulation.

Below, full details of the algorithm for ensuring stability

are presented, followed by an illustration of its effective-

ness.
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2. Methods

2.1. The CRN algorithm

For a complete description of the CRN model, its cre-

ation, justification and a documentation of its parameters

the reader is referred to the original publication [1], as well

as to the overview presented in [3]. A summary, attuned to

the current discussion, is as follows.

The membrane kinetics of the CRN model describes

the interaction of the transmembrane potential Vm and

the intracellular concentrations of three ions: sodium

[Na+]i with gating variables m, h and j, potassium [K+]i
with gating variables xr, xs, ua, ui, sa and si, and calcium

[Ca2+]i with gating variables d, fca and f . These state

variables control the individual currents across the mem-

brane and the flux of each of the associated ions. In addi-

tion, there are exchanges of [Ca2+] across the boundary be-

tween the intracellular compartment and the two compart-

ments of an internal calcium store, the sarcoplasmic retic-

ulum, its so-called uptake and release compartments (see

Fig. 1 of [1] or Fig. 3 of [3]). The concentrations of [Ca2+]

within these compartments are denoted by [Ca2+]up and

[Ca2+]rel, respectively. The exchange between the internal

compartment and the release compartment is specified by

three gating variables: u, v and w. In all 21 state variables

are involved: one voltage, five concentrations and 15 gat-

ing variables. At any moment in time the state of the sys-

tem can be specified by a vector x = [Vm c y], with Vm

a scalar denoting the transmembrane potential, c a vector

denoting the 5 concentrations and y a vector denoting the

15 gating variables. The dynamics of the system is that of

21 coupled first order non-linear differential equations.

The dynamics of this system is highly complex, but con-

stant stationary solutions exist for specific sets of values

of the state variables Vm, [Na+]i, [K+]i and [Ca2+]i [3].

These then set the corresponding values of the remaining

state variables.

2.2. Finding the (constant) state variables

In the following, the term “steady state” is used to refer

to the situation where all state variables are constant over

time. During steady state, the time derivatives of all state

variables are zero and, hence, their values are constant. For

the gating variables, these values are generally referred to

as y∞. Most of these depend (non-linearly) on Vm. Excep-

tions are fca∞, which depends on [Ca2+]i, and u∞, v∞
and w∞, which depend on Fn, a function switching the

[Ca2+] release from the intracellular calcium store. Fn is

based on the balance between three ion currents involved

in the release. These currents themselves are a function of

other state variables.

In the CRN model various currents express the exchange
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Figure 2. As in Fig. 1, now with a stimulus at 1 s intervals,

applied from t=900 s till t=2700 s. The changes in the

activation-recovery intervals (ARI) of the beats relative to

that of the first beat are shown in the lower trace.

of ions across the membrane: INa, IbNa, INaK, IK1, Ito,

IKur, IKr, IKs, IpCa, ICal, IbCa and INaCa [1].

The flux of specific ions across the membrane is directly

linked to the combination of the above currents. During

steady state, all individual intracellular ion concentrations

are constant, which means that their total flux across the

membrane is zero. Similarly, the total flux of [Ca2+] to

and the intracellular calcium store must be zero and, as a

consequence, among x the five state variables, [Ca2+]up,

[Ca2+]rel and the associating state variables (u, v and w)

gating the release of [Ca2+], may be excluded while treat-

ing the ion flux across the membrane.

The zero flux condition across the membrane, applied to

each of the 3 individual ions, forms the basis of the algo-

rithm for finding the steady state values of the state vari-

ables involved. This demands the search of the values of

the remaining 16 state variables such that all three fluxes

are zero. As mentioned before, an infinite number of so-

lutions exist[3]; the unique solution chosen heuristically

here is the one that takes the total charge concentration in

the intracellular space to be equal to that in the extracellu-

lar space.

2.3. The membrane state variables

The three individual ion fluxes across the membrane,

FNa+ , FK+ and FCa2+ are denoted by a column vec-

tor f . These fluxes are expresses as a linear combination

(f = W i) of the 12 currents listed previously, also rep-

resented by a column vector i. The matrix W reflects the

valence of the ions and the stoechiometry of the reactions

involved.
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Under steady state conditions all elements of the current

vector i are a function of the state vector x, in which, as

discussed in the previous subsection, for the gating vector

y we may write y = y(Vm, c). Recall that, during steady

state, y = y∞, and the elements [Ca2+]up and [Ca2+]rel
of the vector c do not play a role in the transmembrane

currents and fluxes. We now have

f = W i = W i (Vm, c,y(Vm, c)) , (1)

and the elements of the vector

[ Vm [Na+]i [K+]i [Ca2+]i ] need to be found such

that all elements of the vector f are zero.

Equation (1) poses the problem of finding zeros in the

4D parameter space on the basis of just three conditions

(the zero fluxes). The solution was made unique by adding

the constraint: [Na+]i + [K+]i + 2[Ca2+]i = [Na+]e +
[K+]e + 2[Ca2+]e, demanding the total intracellular and

extracellular charge density of the ions expressed in the

CRN model to be equal.

An algorithm for solving (1) was devised, based on the

Levenberg-Marquardt method (L-M method) [4], a non-

linear parameter estimation procedure, which was applied

to a parameter vector p with elements pi, i = 1 . . . 4, scal-

ing the respective elements of [ Vm [Na+]i [K
+]i [Ca2+] ],

the default values shown in Table 2 of [1] by 1.01pi . The

initial parameter vector p was [0 0 0 0]. In this manner the

numerical problems related to the widely differing scales

of the actual individual parameters, Vm, [Na+]i, [K
+]i

and [Ca2+]i are avoided. Moreover, their signs are save-

guarded throughout the procedure.

The L-M method iteratively minimizes the squared

norm (SSQ) of f . The elements of the required gradi-

ent matrix of SSQ with respect to those of p were com-

puted numerically, using a local parabolic approximation

with step size: ∆pi = 2 10−3. The search direction in pa-

rameter space is influenced by the value of a positive con-

stant λ, whose value is adjusted after each iteration. For

increasing values of λ the search direction tends more and

more toward the local gradients of SSQ, accompanied by

increasingly smaller step sizes. Conversely, for decreasing

values of λ the search it tends toward the direction indi-

cated by the Gauss-Newton method, while gradually lift-

ing the constraint on the step size.

Starting from λ = 1, if after any iteration SSQ de-

creased, λ was reduced two-fold, else it was increased

four-fold. When nit, the index of the iteration, exceeded

300, or when λ exceeded 100, the iteration process was

stopped.If, at the final iteration, SSQ > 10−6 the initial

estimate of [ Vm [Na+]i [K+]i [Ca2+]i] was rejected, and

the combination found was deemed non-feasible.

2.4. State variables of the calcium store

The above procedure produces the steady initial values

of all state variables except for the five involved in the

[Ca2+] store: [Ca2+]up, [Ca2+]up and the associating gat-

ing variables u = u∞, v = v∞ and w = w∞. In sub-

sequent dynamic applications, their initial values need to

be specified. In fact, only four need to be identified, since

w = w∞ as specified in the CRN algorithm is a function

of Vm only, the latter being identified during the L-M pro-

cedure.

The remaining four were computed on the basis of the

condition (during steady state) of zero total calcium flux to

the store, the ones related to Iup, Ileak = Iup;leak and Irel.

The latter of these currents is gated by the state variables

u, v and w. In addition the calcium flux between uptake

and release compartment was taken into account, the latter

represented by a transient current Itr.

The key elements of the CRN formulation [1] that play

a role in this computation during steady state are as fol-

lows. These are denoted such that all variables found in

the first step (the L-M method) are treated as constants,

while showing explicitly only the ones that remain to be

found. They are, using a compact notation for the calcium

concentrations: [Ca2+] � C, Ileak(Cup), Itr(Cup, Crel),
Irel(u(Fn), v(Fn), Crel), with Fn = Fn(Irel).

For zero flux we must have: Iup=Ileak + Irel. Corre-

spondingly, for the transient flux between the uptake and

release compartments: Iup=Ileak + Itr. The combination

of the latter two expressions can be formulated as a system

of two equations

Ileak(Cup) + Itr(Cup, Crel) = Iup

Ileak(Cup) + Irel (u(Fn), v(Fn), Crel) = Iup.

The relevant details of the functions indicated above, taken

from the CRN formalism, are

Ileak(Cup) = c1Cup,

Itr(Cup, Crel) = c2 × (Cup − Crel),

Irel = k(Fn) × (Crel − Ci),with

k(Fn) = krel u2(Fn) v(Fn) w and

Fn = a × Irel − b. (2)

The current Iup is a function of Ci only and hence, since

the value of the latter is determined in the L-M procedure,

here Iup can be treated as a constant. The same applies to

b and w. The constants a, c1 and c2 denote compact forms

of the CRN parameters.

Based on this notation the system (2) can be written as

[

c1 + c2 −c2

c1 k(Fn)

] [

Cup

Crel

]

=

[

Iup

Iup + k(Fn) Ci

]

.
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Figure 3. As in Fig. 2 but now using the initial state vari-

ables yielding a constant steady state. Note the expanded

time base. α = 10−5. [K+] changes are shown magnified

10 fold; those of [Ca2+] are shown reduced 10 fold .

Any known value of Fn sets the values of u, v and, hence,

of k. Generally, Fn cannot be assumed to be known. How-

ever, for any value of Fn in the CRN formalism, the resting

state value of the product u2(Fn)v(Fn) is such that the re-

sulting value of Irel as in (2), is always several orders of

magnitudes smaller than any of the other currents involved

[3]. Using this approximation, solving (2), then reduced to

a system of linear equations, yields

Cup = Iup/c1

Crel = Iup/c1 = Cup.
(3)

Finally, Fn is calculated from the standard expression

of the CRN algorithm, while using Irel ≈ 0: Fn =
10−13(INaCa − 2.5ICal)/F , with F denoting Faraday’s

constant. This defines u∞ = u(Fn) and v∞ = u(Fn),
and so all four remaining resting state variables are found.

2.5. Anchoring the solution

On the basis of the steady state variables identified by

the algorithm described above, the CRN kinetics of a sin-

gle unit was first applied at zero stimulus strength. Unlike

what was observed resulting from using the default initial

values specified in the CRN paper, all 21 state variables

were found to remain constant over time as desired. How-

ever, upon initiation of a periodic stimulus (with strength

twice the threshold), a residual, slow drift was observed.

This was “cured” by introducing a feedback that eased

the two state variables in which the drift was most pro-

nounced, [Na+]i and [K+]i, toward their constant resting

values [Na+]i;rest and [K+]i;rest, respectively. The feed-

back was implemented, directly following the update of

the concentrations at each time step of 10µs, as

[Na+]i = (1 − α) [Na+]i + α [Na+]i;rest
[K+]i = (1 − α) [K+]i + α [K+]i;rest

, (4)

with 0 <= α <= 1 setting the “pull” of the anchor. Its

value was found empirically, aiming for it to be as small

as possible while still removing long term, persistent drift.

The value adopted was 10−5.

3. Results

The time course over 1 h of the four major state vari-

ables of the CRN kinetics initiated at the default settings

of the CRN paper is shown in Fig. 2. A stimulus (interval

1 s) was applied between 15 and 45 min. The initial stage

depicts the drift as also documented in Fig. 1. During the

next stages a more pronounced, persistent drift can be ob-

served. In contrast, the corresponding response to onset

or termination of the stimulus condition based on the al-

gorithm presented, depicted in Fig. 3, exhibits much faster

(compare Fig. 2) transition to the subsequent, respective

steady state behavior.

4. Discussion

The results shown demonstrate that long term stability

of the CRN formalism can be assured by tuning the initial

state variables to the zero-flux condition of the individual

ions. The same was found to hold true when using pertur-

bations of the basic parameters of the CRN formalism such

as the conductances of individual ions.
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