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Abstract

Circadian variation in atrial fibrillation (AF) frequency

is explored in this paper by employing recent advances in

signal processing. Once the AF frequency has been esti-

mated and tracked by a hidden Markov model approach,

the resulting trend is analyzed for the purpose of detect-

ing and characterizing the presence of circadian varia-

tion. With cosinor analysis, the results show that the short-

term variations in AF frequency exceeds the variation that

may be attributed to circadian. Using the autocorrela-

tion method, circadian variation was detected in 13 of 18

ambulatory ECG recordings (Holter) acquired from pa-

tients with long standing persistent AF. Using the ensemble

correlation method, the highest AF frequency usually oc-

curred during the afternoon, whereas the lowest usually

occurred during late night. It is concluded that circadian

variation is present in most patients with long standing

persistent AF but the short-term variation in AF frequency

is considerable.

1. Introduction

Nearly all functions of the body exhibit circadian vari-

ation. Such variation is important to study as knowledge

about it may help to establish proper timing of drug ad-

ministration (chronotherapy), being essential to maximize

drug effect as well as to reduce side effects.

Circadian variation in AF frequency has been studied

using 24-hour Holter recordings from which sparse mea-

surements of AF frequency were obtained. Based on AF

frequency obtained from 1-minute segments every sixth

hour (16h, 22h, 4h, and 10h) from 30 patients, it was con-

cluded that AF frequency was significantly lower during

night-time than daytime [1]. In another study involving 21

patients, a nocturnal decrease of the normalized AF fre-

quency was observed when the data series was defined by

5-minute segments every hour [2]. The mean length of the

recordings were 15.5 h with certain recordings being as

short as 12 h.

In this study we investigate the AF frequency trend with

respect to the presence of circadian variation, using three

different methods which provide complementary informa-

tion. The cosinor method (Sec. 2.2) assumes that the vari-

ation is characterized by a single sinusoidal with a 24-

hour period, thus imposing a functional shape on the vari-

ation. In contrast to the cosinor method, neither the auto-

correlation method (Sec. 2.3) nor the ensemble correlation

method (Sec. 2.4) impose a functional shape of the circa-

dian variation, but exploits the correlation in time or across

the ensemble.

2. Methods

2.1. Frequency trend estimation

The ECG signals were subjected to preprocessing in

terms of baseline wander removal, using linear time-

invariant highpass filtering, and atrial activity extraction,

using spatiotemporal QRST cancellation [3]. These pre-

processing steps are identical to those which have been

employed in our previous studies, see, e.g., [4]

The AF frequency trend is estimated from short-term

Fourier analysis of the atrial activity. Since the presence

of intermittent noise causes the AF frequency estimates

to become unreliable with this analysis, HMM-based AF

frequency tracking is considered. The HMM method pro-

duces an optimal AF frequency trend from a sequence of

observed AF frequencies, using a priori knowledge about

the likelihood of AF frequency changes and the frequency

estimation method employed. A short summary of the

method is presented below; the details of the method can

be found in [5].

First, the Fourier transform of the extracted atrial ac-

tivity is calculated for each 2-s segment. The maximum

peak of the periodogram is chosen as the observed AF

frequency of the segment, provided that the peak is con-

tained in the interval 3 to 12 Hz and that its magnitude

exceeds a predefined detection threshold. Then, an ob-

servation sequence denoted [zm(1), zm(2), . . . , zm(Nm)]
is created which contains the different states that corre-

spond to the frequency estimates; Nm denotes the length

of zm(n). The HMM is characterized by a state tran-

sition matrix, defining the likelihood of AF frequency
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changes, and an observation matrix, defining the likeli-

hood of estimating the correct frequency. The Viterbi algo-

rithm creates a new sequence of AF frequency estimates,

[xm(1), xm(2), . . . , xm(Nm)], optimized with respect to

the a priori knowledge contained in the above-mentioned

HMM matrices. Those frequency estimates zm(n) that

differ significantly from the observed trend are either ex-

cluded or replaced in xm(n) by estimates based on the ad-

jacent AF frequencies. Hence, the HMM can be viewed as

a postprocessing step which reduces the presence of out-

liers in the trend.

The AF frequency trend is first obtained separately for

each of the ECG leads and then the trend with the least

number of excluded frequency estimates is selected for

further analysis. A robust one-minute resolution AF fre-

quency trend is produced by taking the median of each

segment of 30 consecutive 2-s AF frequency estimates. In

the following, the AF frequency trend is denoted xm(n)
where m refers to patient number.

2.2. The cosinor method

In this method, a single sinusoid ym(n) with a 24-hour

period is fitted to xm(n) so as to determine if there is a cir-

cadian variation in AF frequency. The sinusoid is defined

by

ym(n) = am + bm cos

(

2π(n − n0,m)

24

)

, (1)

where the three parameters am, bm, and n0,m are deter-

mined using a nonlinear least squares method [6]. In the

literature, am is usually referred to as midline estimating

statistic of rhythm (MESOR), bm as amplitude, and the

time at which the fitted curve reaches its maximal value

n0,m is referred to as acrophase.

The goodness-of-fit measure γ2
m indicates how well the

variation in xm(n) is explained by the fitted curve ym(n).
This measure is defined as the ratio between the vari-

ance of ym(n) and the variance of xm(n), i.e., γ2
m =

∑Nm

n=1
(ym(n) − x̄m)2/

∑Nm

n=1
(xm(n) − x̄m)2, where x̄m

denotes mean AF frequency. The measure γ2
m can take

on values between 0 and 1 where larger values indicate a

better fit.

2.3. The autocorrelation method

In contrast to the cosinor method, this method does not

impose a functional structure on the variation, but only es-

tablishes whether or not circadian variation is present in

xm(n) [7]. Evidently, the autocorrelation function rm(k)
indicates to what degree two samples are correlated with

each other, being k samples apart. This function is esti-

mated using the following expression,

r̂m(k) =
1

Nm

Nm−k
∑

n=1

(xm(n)−x̄m)(xm(n+k)−x̄m). (2)

When xm(n) is periodic with length T , rm(k) is positive-

valued at k = pT , p = 0, 1, 2, . . . , since xm(n) deviates

from x̄m in the same direction for these time lags. When

xm(n) exhibits circadian variation, rm(k) has a U-shaped

appearance, i.e., the autocorrelation is positive-valued at 0

and 24 hour lags and negative-valued at intermediate lags.

The autocorrelation function rm(k) is judged to reflect

circadian variation if it differs significantly from the au-

tocorrelation function rw,m(k) that corresponds to white

noise. The difference between rm(k) and rw,m(k) is quan-

tified by calculating a χ2
m-value being defined by

χ2

m =

Nm−1
∑

k=1

(

r̂m(k) − r̂w,m(k)

δ(r̂m(k))

)2

, (3)

where r̂w,m(k) is estimated using r̂m(k) and the stan-

dard error δ(r̂m(k)) is obtained using a bootstrapping tech-

nique [7]. If χ2
m with Nm − 1 degrees of freedom is sig-

nificant and r̂m(k) is U-shaped, xm(n) is said to exhibit a

circadian variation. The autocorrelation method was ap-

plied to hourly averaged AF frequency estimates. Ac-

cordingly, each AF frequency trend was averaged so that

[xh,m(1), xh,m(2), . . . , xh,m(Nh,m)] contains the average

frequency of each hour.

2.4. The ensemble correlation method

The ensemble correlation method can be used to re-

veal joint variational patterns among the ensemble of data

x1(n), . . . , xM (n), e.g., increased or decreased AF fre-

quency during a certain period of the day common to all

patients. Below, we will summarize the main steps of how

to compute the ensemble average and correlation; see [8]

for a detailed description of the method. In this study, de-

viations from the mean AF frequency are analyzed and,

therefore, the following ensemble average is computed,

µ∆x(n) =
1

M

M
∑

m=1

∆xm(n), (4)

where ∆xm(n) = xm(n) − x̄m and M is the number of

frequency trends.

The samples of µ∆x(n) are weighted so that samples

with a large correlation across the ensemble are assigned a

larger weight and vice versa. The weights w(n) is obtained

using a nonlinear transformation of the ensemble correla-

tion ρ(n), which quantifies the degree of correlation be-

tween a set of signals at the time instant n. The ensemble
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correlation is estimated using

ρ̂(n) =

M
∑

i=1

M
∑

j=1,i 6=j

∆xi(n)∆xj(n)

(M − 1)

M
∑

i=1

∆x2

i (n)

. (5)

In order to robustify the estimate, the correlation between

∆xi(n) and ∆xj(n) may be averaged over 2W + 1 sam-

ples.

3. Database

Eighteen 24-hour recordings from different patients

with long standing persistent AF were used in this study.

All recordings were acquired at baseline with two leads

at a sampling rate of 128 Hz, but digitally upsampled to

1000 Hz in order to comply with the requirements of the

software used for beat detection/clustering and atrial activ-

ity extraction.

In order to ensure that all recordings started at the same

time when applying the ensemble correlation method, the

AF frequency trends xm(n) were subjected to shifting so

as to get the same onset time. Therefore, the segment

occurring before the onset time was shifted to the corre-

sponding hour of the subsequent day, and, conversely, the

segment occurring after the end time was shifted to the cor-

responding hour of the preceding day. No shifting was re-

quired for the cosinor and autocorrelation methods.

4. Results

The mean AF frequency x̄m was computed for each of

the 18 recordings and was found to be 6.74 ± 0.77 Hz

(range 5.16 – 8.27 Hz). The standard deviation σm of the

24-hour AF frequency trend was 0.30 ± 0.07 Hz (range

0.19 – 0.45 Hz), demonstrating that the variation in AF

frequency is quite substantial.

The nature of this variation is illustrated by the AF fre-

quency trends displayed in Fig. 1. The long-term varia-

tions in AF frequency are small in amplitude and do not

follow a regular pattern, whereas short-term variations are

quite large.

Using cosinor analysis, the amplitude bm of the vari-

ation was found to be 0.15 ± 0.09 Hz (range 0.05 –

0.30 Hz). The amplitude bm was not correlated with x̄m

(r = −0.26). The acrophase n0,m occurred typically in

the afternoon or evening (median time was at 15h48). The

goodness of fit γ2
m of the sinusoid to the observed trend

was 0.15 ± 0.13 (range 0.008 – 0.446), indicating that

only a small portion of the variation in AF frequency is

accounted for by the fitted sinusoids. The upper frequency

trend in Fig. 1 (case #1) corresponds to the recording with
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Figure 1. Two examples of AF frequency trends corre-

sponding to (a) largest bm and (b) smallest bm.

the largest value of bm, possibly indicative of circadian

variation, whereas the lower frequency trend in Fig. 1 (case

#2) corresponds to the smallest value.

Out of the 18 autocorrelation functions r̂m(k), 14 have

a U-shaped appearance. The χ2
m/degree of freedom val-

ues of these 14 r̂m(k) were 32 ± 33 (range 1 – 113) indi-

cating that all r̂m(k) except one differ significantly from

an autocorrelation function corresponding to white noise

(p < 0.0005). Hence, circadian variation was detected in

13 out of 18 AF frequency trends using the autocorrelation

method.

The ensemble average of the deviations from the mean

AF frequency, µ∆x(n), and the related ensemble correla-

tion, w(n), are presented in Fig. 2 as functions of the time

of the day. It is evident from Fig. 2(a) that the highest

mean AF frequency occurs in the afternoon (about 15h to

17h), while the lowest occurs late in the night (about 1h

to 6h). These two periods of the day are associated with

the most pronounced joint variation as reflected by the en-

semble correlation, see Fig. 2(b). The magnitude of the

ensemble average variation is approximately ±0.15 Hz.

5. Discussion and conclusions

The main result of the present study is that there is

a small circadian variation in AF frequency, though the

short-term variation dominates, cf. Fig. 1. In previous

studies [1,2] the AF frequency was sparsely measured and,

hence, the short-term variation in AF frequency was disre-
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Figure 2. (a) The ensemble average of the deviations from

the mean AF frequency µ∆x(n) and (b) the corresponding

ensemble correlation w(n). The ensemble correlation is

computed with a window length of 2W + 1 = 60 sam-

ples, corresponding to one hour. For this illustration, the

ensemble average µ∆x(n) is filtered using a moving aver-

age filter with the length of 60 samples, corresponding to

one hour.

garded as it could not be observed. The magnitude as well

as the characteristics of the circadian changes in AF fre-

quency were in relative agreement with the results reported

in previous studies where it was shown that AF frequency

decreases at night and increases in the morning [1, 2].

The results are established on a group of patients with

long standing persistent AF who, in general, exhibit a

higher AF frequency than do patients with new onset or

paroxysmal AF; the mean AF frequency x̄m was equal to

6.74 Hz during the 24 hours. It may be speculated that pa-

tients with long standing persistent AF are associated with

less circadian variation due to reduced autonomic modula-

tion, however, such a relation yet remains to be established.

A limitation with the present study is that the dataset

is relatively small. Yet, the current dataset is homoge-

nous and the size of it is enough to demonstrate that cir-

cadian variation is smaller than short-term variation in pa-

tients with long standing persistent AF. The data shifting,

required to make all recordings start at the same time, rep-

resents another limitation of the present study as data from

different days are spliced together; this procedure was only

needed when performing ensemble correlation analysis.

Such a procedure was, however, inevitable to employ when

considering that only 24-hour recordings were available.
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