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Abstract

Atrial fibrillation (AF) type classifiers are still hardly

accepted in clinical practice due to their invasive ap-

proach. In this work a new automated method to assess

noninvasively different AF types is presented, based on

the high spatial resolution given by body surface poten-

tial maps (BSPM). AF organization degree was assessed

by its influence on the spatio-temporal pseudostationarity

and complexity of a principal component analysis mixing

matrix repeatedly derived along a BSPM recording. Sta-

tionarity was analyzed in terms of ability of the mixing ma-

trix derived for a specific recording segment to retrieve the

AA components of subsequent segments, while complexity

in terms of its number of significant components. Results

show that AF organization is reflected in a greater pseudo-

stationarity of the mixing matrix along the recordings and

in a lower number of components needed to represent the

AA, interpreted as a lower complexity in the underlying AA

in patients with organized AF type I.

1. Introduction

Despite of the observation that during atrial fibril-

lation (AF) the atrial tissue is activated by multiple

wavelets showing uncoordinated patterns, several studies

have demonstrated the presence of organization of atrial

activation processes, indicating that a certain degree of lo-

cal organization exists during AF, likely caused by deter-

ministic mechanisms of activation [1], and inversely de-

pending on the chronification of the pathology [2].

Previous invasive studies have attempted to distinguish

between organized and disorganized electrical activity dur-

ing AF. Exploiting principal component analysis (PCA),

Faes et al. [3] noted that electrograms recorded at differ-

ent sites presenting different atrial activity (AA) organiza-

tion were characterized by a different number of significant

principal components, with a lower number of components

needed to represent the more organized AA. Nonetheless,

invasive AF classification is still hardly accepted in clinical

practice despite its potential relevance in clinical decision

making. Therefore, assessment and classification of AF

types from a noninvasive procedure would be appreciated.

Guillem et al. [4] demonstrated the possibility of a non-

invasive visual evaluation of different activation patterns

in patient with AF, similar to that observed invasively by

Konings et al. [5], but exploiting the high spatial resolution

given by body surface potential maps (BSPM), a technique

which has the advantage over the conventional ECG of a

much higher spatial resolution.

In line with these findings, and exploiting the attested

ability of PCA to be a valuable tool for addressing diverse

issues in ECG analysis [6], this work aims to test the possi-

bility of an automated noninvasive evaluation of different

AF types, analyzing if the degree of AF spatio-temporal

repetitiveness and organization can be noninvasively as-

sessed through its influence on the spatio-temporal pseu-

dostationarity and complexity of a PCA mixing matrix re-

peatedly derived along a BSPM recording.

2. Methods

2.1. BSPM data and acquisition system

A dataset composed of 10 BSPM recordings was em-

ployed. All recordings presented persistent AF, 5 previ-

ously classified as AF type I (single wavefront propagat-

ing across the body surface) and 5 as AF type III (no ob-

servable clear wavefront or multiple wavefronts that do

not propagate across the body surface observed simulta-

neously), according to the same criteria and terminology

for classification as those of Konings et al. [5], although

applied to surface recordings instead of electrograms. The

acquisition system exploited was the same as the one in-

troduced in [4]. By means of it, a total of 56 chest and

back leads were acquired simultaneously for each subject.

Leads were arranged as shown in Fig. 1(a). All recordings

were 1-minute long. In order to point out possible dif-

ferences in the spatial stationarity and organization of the

wavefront patterns between the two AF types, no AF sig-

nals classified as type II have been considered in this study.
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Figure 1. (a) Arrangement of the electrodes (open cir-

cles) and belt used for their attachment to the patient. (b)

Definition of the different cardiac waves and intervals. At

the top, example of normal sinus rhythm ECG (NSR). At

the bottom, example of AF ECG, showing a TQ interval

(off:offset; on:onset).

AF type I and III recordings have been always analyzed as

two separated groups in this study.

2.2. ECG signal preprocessing

ECG signals were processed by applying a third-order

zerophase high-pass Chebyshev filter with a −3 dB cut

off frequency at 0.5 Hz to remove baseline wandering due

to physiologically irrelevant low frequency signal interfer-

ences (<1 Hz) [7], followed by a third-order zerophase

low-pass Chebyshev filter with a −3 dB cut off frequency

at 100 Hz to remove high frequency noise. Finally, a ze-

rophase notch filter at 50 Hz was used to suppress power

line noise.

2.3. Atrial activity recordings

In this study only ECG segments free from ventricular

activity were analyzed, and the AA hidden by the QRS-T

complex was disregarded. For this purpose, the R wave

peak, the Q wave onset, and the T wave offset were de-

tected (see Fig. 1(b) for the delineation of the different

cardiac waves). Each BSPM recording was split in 6 con-

secutive intervals of 10-s, and an AA signal was derived

for each interval concatenating only the TQ segments in-

side it. In this way, 6 consecutive 56 lead AA recordings

(named ys, with s = 1, . . . , 6) were obtained from each

56 lead BSPM signal.

2.4. Principal component analysis

Spatial decorrelation provided by PCA involves a linear

transformation of the mean corrected observed signals y ∈

R
n, which produces a set of uncorrelated waveforms with

unit variance x̂ ∈ R
m with (m ≤ n)

y = Mx ⇒ x̂ = M♯y (1)

where x̂ is an estimate of the true vector of the unknown

components, M is the mixing matrix, and symbol ♯ stands

for the pseudo-inverse operator. PCA reduces the dataset

of observed signals to a few representative components,

which are in decreasing order of variance accounted for in

the observations. The ability of PCA to concentrate the

original information in only k components can be assessed

by the cumulative normalized variance, an index reflecting

how well the subset of the first k principal components ap-

proximates the ensemble of original observations in energy

terms

vk =

∑k
i=1

σ2

i∑m
i=1

σ2

i

(2)

where σi are the singular values of y.

2.5. AA spatio-temporal repetitiveness

In order to investigate the link between the complexity

of the AF organization and the spatio-temporal repetitive-

ness in the propagation of its wavefront patterns, we ana-

lyzed the ability of the PCA mixing matrix derived for the

first AA recording y1 to retrieve the AA components of

subsequent segments. Similarly to what proposed by Rieta

et al. in [8], we applied M1 to the following 5 AA record-

ings. In mathematical terms, given the PCA model (1) for

y1 the associated mixing matrix M1 is retained and used

to derive an estimate of the unknown components of the

following AA recordings

x̂s = M
♯
1
ys with s = 2, . . . , 6 (3)

where x̂s is the estimate of the component vector associ-

ated to segment s, obtained by M1. Then, only the first k

components of x̂s where selected to be reprojected back so

as to reconstruct an estimate for ys

ŷs =

k∑

i=1

mi
1
x̂i

s (4)

where mi
1

is the i-th column of M1, and x̂i
s the i-th compo-

nent of x̂s. A specific k giving vk higher than 0.95 (k0.95)

was calculated for y1 of each subject, and used for deriving
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all other ŷs in the same subject. Mixing matrix pseudosta-

tionarity was evaluated in terms of similarities between the

original observations ys and the reconstructed ones ŷs, by

means of Pearson’s coefficient (ρ) and normalized mean

squared error (NMSE), on lead V1 only (lead containing

most of the information on AA). NMSE was defined as

NMSE =

∑N
i=1

(y(i) − ŷ(i))2
∑N

i=1
y(i)2

(5)

where y(i) denotes the reference signal, ŷ(i) an estimate

of it, and N its length.

2.6. AA organization

In order to investigate the link between the complexity

of the AF organization and the complexity in the propaga-

tion of the different wavefront patterns, we assumed that

a less complex organization should be reflected in a lower

number of significant components needed to represent the

AA. Hence, we looked at the average value of parame-

ters k0.95 derived over all PCA mixing matrices Ms on the

same patient. Indeed, when the eigenvalues associated to

the first components are much larger than those associated

to other components, the ensemble exhibits a low morpho-

logical variability, whereas a slow fall-off of the principal

components values indicates a large variability, and so a

higher complexity of the underlying AA.

2.7. Combined analysis

Pseudostationarity analysis described in Section 2.5 was

performed again keeping fixed the number of components

k for the reconstruction of any ŷs, in all subjects. The

number of components k was fixed at the mean value k
AFI

0.95

obtained analyzing AF type I recordings only. In that way,

we wanted to test the improbability of having a highly dis-

organized AA which somehow presents a spatio-temporal

repetitive complexity, expecting to overemphasize the dif-

ferences in the reconstruction between the two groups, de-

pendently on the AA wavefront pattern propagations. This

would confirm the parameter suitability in distinguishing

between the two AF types. Indeed, k
AFI

0.95 is supposed to be

suitable for describing around 0.95 of the variance for AF

type I recordings, but insufficient for having an acceptable

description of AF type III recordings (which are supposed

to exhibit higher complexity).

3. Results

3.1. AA spatio-temporal repetitiveness

AA signal reconstruction is generally better for signals

classified as AF type I than for signals classified as AF

Table 1. Mean performance parameters for the AA spatio-

temporal repetitiveness analysis.
Parameter AF I AF III p-value

ρ 0.98±0.01 0.92±0.04 p < 0.01

NMSE 5.28±1.87 16.44±6.68 p < 0.01

Table 2. Mean number of significant components giving a

cumulative normalized variance of 0.95 for AA organiza-

tion analysis.

Parameter AF I AF III p-value

k0.95 3.64±1.31 8.60±3.80 p < 0.05

type III, as underlined by the significant difference in terms

of mean ρ reported in Table 1 (p < 0.01), which shows

also the significant difference in terms of mean NMSEs

between the two AF types (p < 0.01). Mean parameter

values have been calculated averaging over all subjects for

the same segment and taking the average over all the seg-

ments (for s = 2, . . . , 6).

3.2. AA organization

Results on the AA organization analysis are summarized

in Table 2. Organization has been assessed in terms of

number of principal components k0.95 giving a cumula-

tive normalized variance vk higher than 0.95. Mean values

k0.95 have been obtained averaging k0.95 over all segments

(s = 1, . . . , 6) for the same subject and taking the average

over all subjects. Rounded numbers are k
AFI

0.95 = 4 for AF

type I and k
AFIII

0.95 = 9 for AF type III (p < 0.05). This

parameter ranged from 1 to 7 for AF type I and from 2 to

17 for AF type III.

3.3. Combined analysis

A fixed number of components k = 3 for the reconstruc-

tion of any ŷs was chosen. Three components is close to

k
AFI

0.95 (≃ 4, Table 2) for AF type I, as confirmed by the

mean value of vk calculated until the third components for

AF type I recordings, that is 0.92±0.09, close to 0.95. On

the contrary, it is notably different from k
AFIII

0.95 (≃ 9),

as confirmed by the mean value of vk calculated until the

third component for AF type III, that is 0.78±0.13, consid-

erably smaller than 0.95. Results are summarized in Table

3 (for s = 2, . . . , 6).

As expected, significant differences between the two

groups have been overemphasized by the combined anal-

ysis (p < 10−4, for both parameters), and only mean pa-

rameter values of AF type III have impaired compared to

results presented in Section 3.1, as also showed by the box-

and-whiskers plot reported in Fig. 2.
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Table 3. Mean performance parameters for the AA spatio-

temporal repetitiveness analysis, with k0.95 = 3.
Parameter AF I AF III p-value

ρ 0.98±0.01 0.91±0.02 p < 10
−4

NMSE 4.11±1.57 17.08±3.11 p < 10
−4
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Figure 2. Box-and-whiskers plot for the AA spatio-

temporal repetitiveness (k0.95) analysis and for the com-

bined one (k0.95 = 3).

4. Discussion and conclusions

Invasive AF type classifiers are still hardly accepted in

clinical practice despite their potential relevance in clin-

ical decision making. Starting from the observations of

Guillem et al. [4], this work presented a new automated

method to assess noninvasively different AF types, based

on the high spatial resolution given by BSPM recordings.

AF organization degree was assessed through its influence

on the spatio-temporal pseudostationarity and complexity

of a PCA mixing matrix repeatedly derived along a BSPM

recording. The possibility to distinguish among different

AF types looking at the AF complexity in terms of number

of significant components confirms that the organization

of the underlying AA is significantly reflected on the body

surface, so that high spatial resolution surface recordings

are sufficient to distinguish among different AF types, as

claimed in [4]. Moreover, our findings are consistent with

those presented by Faes et al. [3] obtained studying the ex-

tent of repetitiveness in time of the atrial activations within

single endocardial recordings. Interestingly, both studies

found the same number of significant components neces-

sary to describe 0.95 of the total variance of different types

of AF (4 for AF type I, and 9 for AF type III). In conclu-

sion, a greater AF organization has been shown to be re-

flected in a greater pseudostationarity of the mixing matrix

along the recordings and in a lower number of components

needed to represent the AA, which can be interpreted as

a lower complexity in the underlying AA in patients with

organized AF type I, presenting a new way for noninvasive

analysis and diagnosis of AF.
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