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Abstract

In this study, we propose a generalized likelihood ratio

test statistic for detection of heart rate turbulence (HRT)

based on a linear signal model. The new test statistic,

which expands our previous original detector, takes a pri-

ori information regarding HRT shape into account. The

detector structure is based on the extended integral pulse

frequency modulation model which accounts for the pres-

ence of ectopic beats and HRT. The spectral relationship

between heart rate variability (HRV) and HRT is investi-

gated for the purpose of modeling HRV “noise” present

during the turbulence period.The performance was stud-

ied for both simulated data and real data obtained from

the Long-Term ST database. The results show that the new

detector is superior to the original one as well as to the

commonly used parameter turbulence slope (TS) on both

types of data.

1. Introduction

Heart rate turbulence (HRT) refers to a short-term fluc-

tuation in heart rate triggered by a single ventricular ec-

topic beat (VEB) [1, 2]. Such turbulence is considered to

be a blood pressure regulating mechanism which, in nor-

mal subjects, compensates for the VEB-induced drop in

blood pressure by an accelerated sinus rate. The heart rate

then decelerates to its baseline level and the blood pres-

sure returns to its preextrasystolic level [3]. Blunted or

missing turbulence reflects autonomic dysfunction and is

associated with various conditions. In particular, HRT has

been established as a powerful risk predictor of mortality

and sudden cardiac death following acute myocardial in-

farction [1, 2].

To date, turbulence slope (TS) and turbulence onset

(TO) are the two most commonly employed parameters

for assessing HRT. It has been demonstrated that TS

suffers from certain shortcomings, notably that TS is

overestimated when few VEBs are available for averag-

ing or when considerable heart rate variability (HRV) is

present [4]. Recently a model-based approach to HRT de-

tection was considered in relation to the integral pulse fre-

quency modulation (IPFM) model, but extended to account

for HRT [5]. It was assumed that the observed signal can

be viewed as the summation of HRV, modeled by additive

white Gaussian noise, and HRT, modeled as a linear com-

bination of Karhunen–Loève (KL) basis functions. Results

from simulated data suggested that the resulting general-

ized likelihood ratio test (GLRT) detector offers better per-

formance than does TS since at least twice the number of

VEBs for averaging are needed for TS to attain a perfor-

mance which is identical to that of the GLRT detector [5].

Following the work published in [5], it was found that the

assumption of HRT being modeled as an unrestricted lin-

ear combination of basis functions sometimes lead to tur-

bulence shapes which have nonphysiological characteristic

i.e., the signal model is not restricted to the acceleration-

deceleration response which is usually referred to as a tur-

bulence shape. In order to solve this problem, a revised

model is presented here, where certain a priori informa-

tion on turbulence shape is incorporated. Further the white

noise assumption is examined in terms of HRV and HRT

power spectra and its feasibility for modeling HRV is con-

sidered; the corresponding GLRT detector is derived and

evaluated.

2. Materials

2.1. Simulated signals

The IPFM model can be used to create a series of heart-

beat occurrence times from a continuous-time modulating

signal m(t) which reflects the autonomic influence on the

cardiac rhythm [6]. An extended IPFM model was recently

proposed which accounts for HRT by introducing a feed-

back branch which is triggered by an ectopic beat [5].

The observations xl of the lth VEB can be written as

xl = hl + ml, (1)

where hl and ml are the N × 1 discrete time vectors of

HRT and HRV, respectively. The HRT response to the lth
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VEB is modeled linearly with a truncated set of KL basis

functions,

hl = Bθl, (2)

where B is an N × r matrix whose r columns contain the

KL basis functions, and θl is an r × 1 vector containing

the KL coefficients associated with the lth VEB. The ba-

sis functions in B, together with θl, define the turbulence

shape. It is assumed that HRT has a known determinis-

tic shape which can be obtained from the KL representa-

tion of the datasets described previously. The vector ml,

accounting for HRV, is generated by a 7th order autore-

gressive (AR) model, representing variability during rest-

ing conditions [5]. The desired SNR between HRV and

HRT is obtained by changing the ratio between the energy

of hl and ml.

2.2. ECG signals

The Long-Term ST database contains 86 ECG Holter

recordings of 80 subjects, acquired during clinical routine

in USA and Europe [7]. A selection of VEBs was gathered

from this database where the VEBs adhered to the criteria

given in [2]. These criteria ensure that the sinus rhythm

immediately preceding and following the VEB is free of

artefacts, arrhythmia, and false classifications and is thus

suitable for HRT analysis.

Dataset for spectral study: When analyzing the spec-

tral properties of HRT and HRV, two additional criteria

were introduced: The recording should contain ≥ 40
VEBs to ensure that the variance of the spectral estimate

is significantly reduced through averaging and TS < 15
so that outlier HRTs are excluded from further analysis.

Application of these two additional criteria together with

the criteria in [2] resulted in a total of 3498 VEBs from 22

recordings.

Datasets for detector evaluation: The following two

datasets were used: one containing recordings with HRT,

denoted S1, and another without HRT, denoted S0. A

recording was included in S1 if it contained ≥ 15 VEBs,

which all complied with the criteria in [2] and with a

TS > 2.5. Application of these two additional criteria

together with the criteria in [2] resulted in a total of 5764

VEBs from 26 recordings. The set S0 is constructed by

extracting 26577 segments from 10 patients without any

VEBs. The set S1 is randomly divided into a learning set

(S1,l) and a test set (S1,t), whereas the whole data set S0 is

used for testing.

3. HRV/HRT spectral relation

The spectral relation between HRV and HRT is inves-

tigated by extracting RR-segments before and after every

VEB in the spectral study dataset and thereafter comparing

their power spectra. A segment before a VEB is denoted

IA and a segment after a VEB is denoted IB. If the IB
segments adhering to a specific record is averaged prior

to power spectral estimation, HRV largely cancels out and

the power spectrum from such a segment will reflect HRT

only. The averaged segment is denoted IB̄. Each segment

contain 15 s of data. By calculating the average power

spectrum of every IA, IB and IB̄ segment one can evalu-

ate the relation between HRV and HRT.

Figure 1 shows the average power spectra for segments

IA, IB, and IB̄ when HRT is present. These observations

show that a substantial spectral overlap exists between

IA and IB segments. Since the HRT spectrum PB̄(ejω)
is largely confined inside the HRV spectrum P̄A(ejω), a

noise whitening operation would also whiten the HRT sig-

nal and render detection improvement difficult. It is there-

fore concluded that the white noise assumption is feasible

to adopt in a model for HRT detection.

4. HRT detection

Our approach to HRT detection is based on the extended

IPFM model and an equidistantly sampled signal xl, ob-

tained after the lth VEB in a recording. Dropping the index

l, the detection problem is formulated as

H0 : x = m

H1 : x = Bµ + m,
(3)

where hypothesis H0 represents when HRT is absent and

hypothesis H1 when present. The N × 1 observation vec-

tor x in (3) is obtained from the RR intervals subjected

to detection, m is an N × 1 vector and represents HRV,

here treated as random observation noise. The N × r ma-

trix B contains r different KL basis functions which model

HRT, cf. (2). The vector µ is an r × 1 vector containing

the KL coefficients of the mean turbulence shape which is

estimated a priori from a learning set. Based on the ob-

servations made in Sec. 3, HRV is characterized by the

Gaussian probability density function N (0, σ2
I), where I

denotes the identity matrix and σ2 the variance which here

is assumed to be unknown and therefore subjected to esti-

mation.

The resulting test statistic Tµ(x) of the GLRT is used

for HRT detection. Hypothesis H1 is decided if

Tµ(x) =
x

T
x

(x − Bµ)T (x − Bµ)
> γ′, (4)

where γ′ is a threshold determined for a given probability

of false alarm (PFA).

5. Detector evaluation

In the evaluation, the original test statistic denoted

Tθ(x) [5] and the new test statistic Tµ(x) use basis func-

154



0 0.25 0.5
0

0.2

0.4

0.6

0.8

1

0 0.25 0.5
0

0.2

0.4

0.6

0.8

1

0 0.25 0.5
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

f (Hz)

P̄
A

(e
j
ω
)

f (Hz)

P̄
B

(e
j
ω
)

f (Hz)

P
B̄

(e
j
ω
)

Figure 1. The average power spectra reflecting (a) HRV, (b) the combined influence of HRV and HRT, and (c) HRT,

respectively. One standard deviation is displayed for each power spectrum using dashed lines.

tions that resulted from S1,l, (i.e. B = B̂l), whereas

the extended IPFM model use basis functions that resulted

from S1,t, (B = B̂t). Both B̂l and B̂t are obtained as

the three most significant eigenvectors (i.e., r = 3) of two

average correlation matrices R̄x estimated from the obser-

vations xl of the two sets S1,t and S1,l. Each observation

xl is 10 s, resulting in a 21 × 1 vector.

Evaluation of detector performance using different

SNRs was performed using the simulation model. The

model employed a mean shape resulting from S1,t (µ =
µ̂t), whereas the detector employed a mean shape result-

ing from S1,l, (µ = µ̂l). A total of 4000 signals were

simulated for each of the evaluated SNRs, divided in 2000

signals with HRT and 2000 without.

In order to evaluate how variations in mean shape affects

detection performance, simulations were performed where

the model uses a set of varying mean shapes to generate

signals. A set of 100 mean shape vectors were produced

according to the Cholesky decomposition of the covariance

matrix estimated from the KL coefficients calculated from

dataset S1, thus producing a set of generated KL coeffi-

cients.

Further, detection performance was evaluated on real

ECG signals using the datasets S0 and S1,t.

6. Results

Figure 2(a) presents the receiver operating character-

istics (ROCs), plotting the probability of detection (PD)

against PFA for Tµ(x), Tθ(x), and TS at a very low SNR

(−10 dB) of the simulated signals, showing that Tµ(x) per-

forms better than both Tθ(x) and TS. Increasing the SNR

to 0 dB, Tµ(x) outperforms the other two, see Fig. 2(b).

For an SNR of 10 dB (not shown), the performances of all

three detectors are essentially perfect.

Figure 3 shows the detection performance for simulated

signals when using 100 different mean shapes in the model

at an SNR of 0 dB. Tµ(x) clearly offers better performance

than do Tθ(x) and TS when variations in the mean shape

are present.

Turning to the ECG signals, detector performance is

evaluated on the test set (S0,S1,t), using parameters de-

termined from the learning set (S1,l). Applying the three

detectors to single VEBs, i.e., without resorting to averag-

ing, the ROCs in Fig. 4(a) show that Tµ(x) performs better

than both Tθ(x) and TS. Increasing the SNR by averaging

10 VEBs, it is obvious from Fig. 4(b) that Tµ(x) offers su-

perior performance when compared to the other two detec-

tors. A further increase of the SNR, obtained by averaging

50 VEBs, results in an almost perfect ROC for Tµ(x) since

the PD = 1 for almost all values of PFA, see Fig. 4(c). The

performance of Tθ(x) and TS is still inferior.
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Figure 2. Receiver operating characteristics for Tµ(x)
(solid line), Tθ(x) (dashed line), and TS (dotted line)

when analyzing simulated signals. The performance is

evaluated at an SNR of (a) −10 dB and (b) 0 dB.

7. Conclusion

Introducing the mean turbulence shape µ, a large im-

provement in performance was found on both simulated

and real signals when compared to the original GLRT de-

tector Tθ(x) and the commonly used parameter TS. Also,

the white noise assumption was concluded as feasible to

use in a HRT detector.
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Figure 3. Receiver operating characteristics obtained when evaluating performance on simulated signals generated using

100 different mean shapes. Solid line describes ROC for the 50th percentile, dashed lines for the 10th and 90th percentile

for (a) Tµ(x), (b) Tθ(x) and (c) TS using an SNR of 0 dB.
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Figure 4. Receiver operating characteristics for Tµ(x) (solid line), Tθ(x) (dashed line), and TS (dotted line) when

analyzing ECG signals. The performance is evaluated for (a) single VEBs, (b) averaging of 10 VEBs, and (c) averaging of

50 VEBs.
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