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Abstract

In long-term HRV analysis, it is common choice to study

the difference signal IRRi = RRi+1 −RRi. In this work

we first verified the fitting of a Lévy stable distribution on

the signals IRR obtained from four databases, available

on Physionet. They included normal subjects (N) but also

individuals suffering from congestive heart failure (CHF)

or showing ST segment changes (ST). The study showed

that a Lévy stable distribution was generally more appro-

priate on the series than a Gaussian one (N: 1.70±0.19;

CHF: 1.74±0.18; ST: 1.66±0.22). The differences be-

tween the populations were not significant (p > 5%).

Based on the value of RMSSD on local short intervals,

we built a simple Gaussian mixture density for each IRR

series. Such mixture densities were able to properly de-

scribe the histograms in the databases under analysis. This

explanation, which also avoids the necessity of invariant

densities with not-finite second moments, might be closer

to the physiological situation at hand.

1. Introduction

When analyzing HRV in long recordings, RR series typ-

ically show non stationary evidences. For this reason it is

common choice to study the difference signal IRR(i) =
RR(i + 1) − RR(i), which is, by construction, more sta-

tionary. Peng and coworkers [1] showed that such differ-

ence signal displays a normalized histogram with very long

tails which can be properly modeled as a symmetrical Lévy

stable distribution. In particular they found that the statis-

tics of healthy subjects and of patients suffering from di-

lated cardiomyopathy are similar stable distribution with

α ≈ 1.7.

A distribution FX is called strictly stable if, given N

mutually independent random variables Xk with common

distribution FX(x), does exist a value C > 0 such that

c1X1 + c2X2 + ... + cNXN = CX (1)

where ck are real numbers. The theory of random vari-

ables was formalized by Lévy [2]; among other results, he

showed that the family of symmetrical distributions

fX(x, α, γ) =
1

π

∫ +∞

0

e−γqα

cos(qx)dq (2)

is the only possible symmetrical solution to the functional

equation (1) combined with the auxiliary relation

cα = cα
1 + cα

2 + ... + cα
N . (3)

The value α ∈ (0, 2] is the characteristic exponent and

it defines the spread of probability towards the tails of

the density function; γ > 0 is instead a scaling constant.

Such distributions are sometimes called Lévy stable distri-

butions. The density fX can be obtained as inverse Fourier

transform of the function e−γ|q|α often called characteris-

tic function.

A strictly stable distribution is fractal in nature, as the

sum of N independent variables extracted from it looks ex-

actly the same as a single variables1, once adjusted by a

scale factor C. The Cauchy (Lorentzian) and the Gaus-

sian distribution are particular cases of Lévy stable distri-

butions obtained with α = 1 and α = 2 respectively. The

first moment is finite for 1 < α ≤ 2 while the second only

for α = 2, that is the normal is the only stable distribu-

tion with finite second moment. All superior moments are

infinite.

The results of Peng and coworkers thus suggested that

the tails in the distribution of the difference signal IRR(i)
were “heavier” than those permitted by a normal distribu-

tion, making large values of IRR(i) more likely. They also

suggested that the slow decay of the distribution for large

increment might relate to the dynamics of the cardiovas-

cular control system. A detailed study of the importance

of the Lévy statistics in physiology was given by West and

Deering [3] (see also [4]) who developed a simple linear

mathematical model for the fluctuations which can also be

applied to IRR(i). Also, Tsallis et al. [5] using a general-

ization of the central limit theorem, offered a more general

explanation for the ubiquity of Lévy distributions.

1It is possible to derive a generalization of the box-counting dimension
for a random variable X extracted from a strictly stable distribution FX .
It follows that the fractal dimension of X is D = α
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In this work we first studied the histograms of the differ-

ence signals obtained from four different databases of long

term HRV recordings, available on Physionet, to verify the

findings of Peng et al. on a larger number of cases. While

several reasons might induce the presence of a density sim-

ilar to a Lévy stable distribution, we then tried to verify if

a “stable-like” distribution could be qualitatively obtained

with a simple Gaussian mixture density, not fitted on the

data but based on the short term values of RMSSD.

2. Methods

Dataset. We analyzed 187 RR series obtained from

long-term Holter recordings. The series were selected

among the ones available on Physionet [6] to make

the study as reproducible as possible. Four databases

were considered: (i) the MIT-BIH Normal Sinus Rhythm

Database (nsrdb, long-term ECG recordings of 18 sub-

jects with no significant arrhythmias, 5 men and 13
women; sampling rate: 128 Hz); (ii) the Normal Sinus

Rhythm RR Interval Database (nsr2db, beat annotation

files for long-term ECG recordings of 54 subjects in nor-

mal sinus rhythm, 30 men and 24 women; original sam-

pling rate: 128 Hz); (iii) the Congestive Heart Failure RR

Interval Database (chf2db, beat annotation files for long-

term ECG recordings of 29 subjects with congestive heart

failure; original sampling rate: 128 Hz); (iv) the Long-

Term ST Database (ltstdb, 86 Holter ECG recordings

of 80 subjects displaying a variety of events leading to ST

segment changes; sampling rate: 250 Hz). Given the fact

that the databases already contained beat annotations ob-

tained by labeling software with manual review and cor-

rections, and that for two databases the original recordings

were not available, we further analyzes the annotations as

provided. Summarizing we studied normal subjects (N, 72
cases), individuals suffering from congestive heart failure

(CHF, 29 cases) or with ECG showing ST segment changes

(ST, 86 cases).

Distribution’s parameters estimation. For each RR se-

ries, only interval differences obtained from consecutive

NN intervals were retained for further processing. The

fit of a discrete Lévy stable distribution to each sample

was performed using maximum likelihood [7] employing a

very robust code (STABLE Matlab toolbox, Robust Anal-

ysis Inc [8]). For the computations, intervals in absolute

values larger than about 2 seconds were marked as not

physiological and excluded. In fact, inter-beat intervals

generated by spurious beats and artifacts would have in-

creased anomalously the weight of the tails in the distribu-

tion (the number of sample excluded was minimal though,

on average ≈ 5 points per series). Then during the fitting,

symmetry of the stable distribution was assumed.
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Figure 1. Probability density functions of IRR(i),
the differences between adjacent NN intervals, for

three different long-term recordings (dots): (a) record

nsr2db/nsr029; (b) record nsrdb/16273; (c)

record nsr2db/nsr004. The Lévy stable distributions

fitted to the IRR(i) series are plotted with continuous

lines; the corresponding values of α are 1.63, 1.47 and

1.80 respectively. Also the Gaussian distributions which

best fit the same data (maximum likelihood) are reported

(sketched lines).

3. Results

The fitting of a discrete Lévy stable distribution was per-

formed on each of the 187 series. Only the parameter

α, characterizing the weight of the tails, was considered.

Three sample distributions are showed in figure 1. The

fitting was in many cases good as in the case reported in

panel (a). For other recordings, for values of IRR(i) larger

than 20 samples (about 160 ms), the actual distributions

showed departures from a stable-like shape. Panel (b) and

(c) report cases in which the tails have a weight, respec-
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tively, larger and smaller than expected. On average, the

mean value of α across each population was smaller than

2 (N: 1.70 ± 0.19; CHF: 1.74 ± 0.18; ST: 1.66 ± 0.22)

but it was not so uncommon to have values of α comprised

between 1.9 and 2. We also checked the width of the confi-

dence intervals for the parameter α which was always very

small, but this is more the effect of the large number of

points included in each series (on average 100325± 1985)

than a proof of goodness-of-fit to a stable-like distribution.

The differences between the populations were not sig-

nificant (p > 5%, t test for multiple comparisons) and

the average value across all the 187 recordings was 1.69±
0.20. These results confirm the findings of Peng et al. [1]

who reported a value of α of 1.7 and did not find any signif-

icant differences between a normal subject and a severely

heart diseased one. The histogram of the values of α ob-

tained on the whole population is reported in figure 2.

Several reasons might induce the presence of a den-

sity similar to a Lévy stable distribution. Recently, Lin

and Hughson [9], building on the work of Hausdorff and

Peng [10], suggested a model in which the increments

IRR(i) are generated by averaging different Gaussian ran-

dom walkers (with proper weights). Such model was able

to produce series which exhibit distributions with long

tails.

A factor which need to be considered though is that the

physiological mechanisms which influence the increments

signal IRR(i) are difficultly stationary on the time span

on which the series were recorded. Non-stationarity is

likely to be the reason underlying the deviation from the

fitted distribution in figure 1. To understand this further we

repeated the fitting procedure on shorter non-overlapping

segments of 500 points, slightly longer than 5 minutes, a

time span under which we might assume a larger degree

of stationarity. While the histograms were still well de-

scribed by a stable distribution, the mean value of α across

the populations was markedly larger (N: 1.88±0.10; CHF:

1.88±0.11; ST: 1.84±0.13) and closer to a normal distri-

bution (i.e. α = 2). Similar results were obtained also

considering longer segments (1000 points).

While such discrepancies might be due to numerical

problems of convergence (shorter series imply a smaller

number of extreme events, on average), in this case it is

unlikely to be so. In fact, we verified that once generated

20 random series of 500 points distributed according to a

Lévy stable distribution (using the STABLE toolbox and

with the same parameters obtained from each HRV series),

then a newly fitted stable distribution displayed an average

estimation error on α of about 0.048±0.036. Therefore the

differences are improbably originated from the estimation

uncertainties alone.

To explore this further we then built a simple Gaus-

sian mixture density p(x) , which is obtained as a combi-
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Figure 2. Histogram of the values of α fitted on the 187 in-

terval difference series. The vertical lines represents: mean

(continuous), median (sketched), 25% and 75% percentiles

(dotted lines).

nation of different probability Gaussian density functions

g(x, θj), e.g.

p(x) =
c∑

j=1

ωjg(x, θj) (4)

where θj is the standard deviation which fully character-

ize the density g() (the mean is set to zero). We arbitrary

selected c = 5 and for each RR series we constructed the

density (4) as follow. First, we estimated the RMSSD2 on

consecutive 500 points intervals. Then an histogram of the

RMSSD values was built with c bins. Finally, the central

point of each bin provided a value for θj and ωj was set to

the relative frequency of that bin.

A mixture density was built for each series and then used

to produce a surrogate signal. The surrogate signals were

still displaying heavy tails thus a Lévy stable distribution

was eventually fit on them. Figure 3 compares the his-

tograms of the interval difference series and of the one ob-

tained from the corresponding mixture model. While the

values of α obtained were larger than the ones observed on

the series, they were still significantly smaller than 2 and

smaller than those estimated on shorter non-overlapping

segments of 500 points (N: 1.79±0.14; CHF: 1.86±0.14,

ST: 1.78 ± 0.15).

4. Discussion and conclusions

The study confirmed on average the findings of Peng

et al. [1], that is long-term HRV recordings display in-

terval difference series which can be reasonably modeled

2RMSSD: square root of the mean squared differences of successive
NN intervals [11]. RMSSD is a measure of the short-term HRV compo-
nents, highly correlated with pNN50 and HF power.
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Figure 3. Probability density functions of IRR(i) for

subject nsr2db/nsr029 (dots), along with the sample

density obtained from the corresponding mixture density

(thick line), and the fitted Gaussian density (sketched line)

with symmetrical Lévy stable distributions. In most cases

the model holds well and offers a superior fit with respect

to a normal distribution for values of IRR(i) smaller than

≈ 160 ms. For larger values of IRR(i), departures from a

stable distribution might appear, similarly to what shown

in figures 1(b) and 1(c). Also, we verified that the value

of the parameter α, which describes the weight of the tails,

did not vary across the three groups we considered. It dis-

played a mean value of 1.69 very close to what suggested

by Peng et al. Said that, we also noticed cases in which

either the value of α was much smaller than 1.7 or closer

to 2 as figure 2 shows.

The naive Gaussian mixture densities we built, for

which we did not perform any actual fit, were able to gen-

erate heavy tails and to properly describe the histograms

in the databases under analysis. The weights and the vari-

ances of the Gaussian components were derived from the

behavior of the HRV short-term components (RMSSD).

As Nolan noticed [7], skeptics of non-Gaussian stable

models often employ time-varying variances and mixture

models to explain for the heavy tails found in the data. In

this case though, mixture models must be considered a de-

scription possibly closer to the physiological mechanisms

underlying the generation of the series. In fact the continu-

ous adaptations of the cardiovascular control system would

suggest to be cautious before assuming stationarity.

Concluding, this study support the idea that a Lévy sta-

ble distribution might be employed, when a concise de-

scription of the series IRR(i) is needed. On the other

hand, in our opinion, the non-stationarity of the cardiovas-

cular control system hints that the heavy tails might arise

from the superposition of Gaussian phenomena, driven by

the same input which modulate the HRV short-term com-

ponents. Thus the long tails seen in the IRR(i) could be

modeled also by Gaussian mixture densities. Occam’s ra-

zor would prefer this simple explanation which also avoids

the necessity of invariant densities with not-finite second
moments (unlikely in a physiological system).
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