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Abstract

Heart rate variability (HRV) data display non-

stationary characteristics, exhibit long-range correlations

(memory) and instantaneous variability (volatility). Re-

cently, we have proposed fractionally integrated autore-

gressive moving average (ARFIMA) models for a para-

metric alternative to the widely-used technique detrended

fluctuation analysis, for long memory estimation in HRV.

Usually, the volatility in HRV studies is assessed by recur-

sive least squares. In this work, we propose an alternative

approach based on ARFIMA models with generalized au-

toregressive conditionally heteroscedastic (GARCH) inno-

vations. ARFIMA-GARCH models, combined with selec-

tive adaptive segmentation, may be used to capture and

remove long-range correlation and estimate the condi-

tional volatility in 24 hour HRV recordings. The ARFIMA-

GARCH approach is applied to 24 hour HRV recordings

from the Noltisalis database allowing to discriminate be-

tween the different groups.

1. Introduction

The discrete series of successive RR intervals in the

electrocardiogram (the tachogram) is the simplest signal

that can be used to characterize heart rate variability (HRV)

and has been applied in various clinical situations [1].

Ambulatory long-term HRV series correspond typically

to 100000 beats in a 24-hour recording, exhibit non-

stationary characteristics and can be described by time-

variant autoregressive (AR) modelling. AR models are

said short memory models since their autocorrelations

(ACF) decay to zero exponentially. However, the sam-

ple autocorrelations (SACF) of HRV series show a very

slow decay, indicating that the dependence between dis-

tant observations is not negligible, which is illustrated in

Figure 1 (a) and (b). Correlations exhibiting this type of

behaviour are called long-range correlations and the pro-

cesses are denoted long-memory, correspond to a spec-

tral density function obeying power law (1/f) in the very
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Figure 1. (a) Tachogram of a normal subject, (b) SACF and

ACF of the AR(11) model (AIC criterion), (c) residuals of the fitted

ARFIMA(7,0.47,0) model, (d) squared residuals, (e) and (f) SACF of

residuals and squared residuals, respectively.

low frequencies [2]. In recent years, detrended fluctuation

analysis (DFA) has become a widely-used technique for

the detection of long-range correlations in non-stationary

data [3,4]. An alternative approach, proposed by Leite et

al [5], is to use fractional integrated autoregressive mov-

ing average (ARFIMA) models, which are an extension of

the well-known autoregressive moving average (ARMA)

models.

Another characteristic of HRV recordings is time-

varying variance or volatility, clearly illustrated in 24 hour

Holter HRV recording in Figure 3 (a). However, very little

attention has been paid so far to the volatility characteris-

tics of the HRV data. In fact, even though the residuals
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from ARFIMA modelling of the HRV series exhibit lit-

tle correlation, indicating that the ARFIMA model is ad-

equate, the squared residuals exhibit significant correla-

tion, indicating time-varying variance [6,7], Figure 1 (c)-

(f). Usually, the volatility in HRV studies is assessed by

AR modelling basead upon recursive least squares.

In this work, we propose an alternative approach

based on ARFIMA models with generalized autoregres-

sive conditionally heteroscedastic innovations (ARFIMA-

GARCH), which are an extension of the ARFIMA models.

ARFIMA-GARCH models combined with selective adap-

tive segmentation may be used to capture and remove long-

range correlation and estimate the condicional volatility,

leading to an improved description of the components in

24 hour HRV recordings. This modelling can be used in

reduced length segments of 512 beats. The ARFIMA-

GARCH approach is applied to 24 hour HRV recordings

of 30 subjects from Noltisalis database [8].

2. Long memory and volatility

A stationary process x(t)t∈Z is said to have long-range

correlations if there exists a real number α ∈]0, 1[ and a

constant cf > 0 such that

f(ω) ∼ cf |ω|
−α, ω → 0, (1)

where f(.) is the spectral density function. A class of

processes with this property are the ARFIMA processes.

These processes were introduced by Hosking [9] and have

important applications since they are capable of modelling

both the short- and the long-term behaviour of a time se-

ries. However, these processes assume that the condicional

variance of the time series is constant over time.

Bollerslev [6] introduced GARCH processes to mod-

elling time series with a time-varying condicional vari-

ance. These processes became central in field of financial

and econometrics. Later, Baillie & Chung [10] proposed

ARFIMA-GARCH models which are able to represent

time series that exhibit both features: long memory and

changing conditional variances.

2.1. ARFIMA-GARCH approach

A stochastic process x(t)t∈Z is an ARFIMA(p, d, q)-

GARCH(r, s), p, q, r, s ∈ N∪{0} and d ∈ R, if it satisfies

φ(B)∇dx(t) = θ(B)ǫ(t), (2)

with

ǫ(t) = σ(t)z(t),

σ2
ǫ (t) = u0 +

r∑

i=1

ui ǫ2(t − i) +

s∑

j=1

vj σ2
ǫ (t − i), (3)

where φ(z) = 1 − φ1z − ... − φpz
p and θ(z) = 1 −

θ1z − ... − θqz
q are polynomials such that φ(z) �= 0 and

θ(z) �= 0 for |z| ≤ 1, B is the backward-shift operator. ∇d

is the fractional difference operator defined by

∇d = (1 − B)d = 1 +

∞∑

j=1

Γ(j − d)

Γ(j + 1)Γ(−d)
Bj ,

Γ(.) is the gamma function, z(t) is independent and identi-

cally distributed with zero mean and unit variance, u0 > 0,

u1, ..., ur, v1, ..., vs ≥ 0,
r∑

i=1

ui +
s∑

j=1

vj < 1 and σ2
ǫ (t)

is the conditional volatility. In equation (2), the param-

eter d determines the long-term behaviour, whereas p, q

and the coefficients in φ(B) and θ(B) allow the mod-

elling of short-range properties. Equation (2) describes

the mean of the process with serially uncorrelated resid-

ual, whereas equation (3) describes the volatility process

as dependent on its own lagged values and on the squared

residuals of the mean equation. For −0.5 < d < 0.5,

the ARFIMA(p, d, q)-GARCH(r, s) is stationary and in-

vertible and for 0 < d < 0.5 the process has long-

memory. Moreover, for 0.5 ≤ d < 1 the process is

non-stationary and is mean reverting. For d = q = s =
r = 0 ARFIMA(p, d, q)-GARCH(r, s) reduces to the clas-

sic short-memory AR(p) model. In this work, we consider

ARFIMA(p, d, 0)-GARCH(1, 1) models, currently cited in

literature [10,11] and give special attention to the parame-

ters: d which characterizes the long memory and u1 which

characterizes the volatility. The spectral density function

of ARFIMA(p, d, 0)-GARCH(1, 1) process is given by

f(t, ω) = fSM (t, ω)|1 − e−iω|−2d, −π ≤ ω ≤ π, (4)

where fSM (t, ω) =
σ2

ǫ
(t)

|φ(e−iω)|2 is the spectral density

of the corresponding short-range correlations, AR(p)-

GARCH(1, 1) process and α = 2d, equations (1) and (4).

Given a HRV series, x(1), ..., x(N), the estimation

of the parameters of the ARFIMA(p, d, 0)-GARCH(1, 1)

models is as follows [2,10]: estimate d using the semi-

parametric local Whittle estimator (LWE) and estimate

the AR(p)-GARCH(1, 1) parameters in the filtered data

y(t) = (1 − B)dx(t). The LWE estimator is consistent

for −0.5 < d < 1 [11,12] and the AR-GARCH param-

eters are estimated from the maximum likelihood estima-

tion, with the order p determined by the Akaike Informa-

tion Criterion (AIC).

2.2. ARFIMA-GARCH modelling of HRV

To illustrate the use of ARFIMA-GARCH models in

short-term HRV data, the tachogram represented in Figure

1(a) is modelled with a ARFIMA(6,0.48,0)-GARCH(1,1).

The estimated values for d and û1, (d̂ = 0.48, û1 = 0.25),
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indicate that the record has long memory and conditional

volatility. The conditional volatility estimate σ̂2
ǫ (t), repre-

sented in Figure 2 (b), allows the identification of transient

phenomena. These results indicate that ARFIMA(p, d, 0)-

GARCH(1,1) models are adequate in HRV recordings, al-

lowing more parcimonious modelling that AR(p) mod-

elling. Similar results were obtained in other recordings.
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Figure 2. (a) Tachogram of Figure 1 and (b) conditional volatility

estimate σ̂
2
ǫ
(t) from ARFIMA-GARCH modelling.

To describe long-range correlations and conditional

volatility in the long-term HRV series (approximately 105

beats), ARFIMA-GARCH modelling combined with se-

lective adaptive segmentation is used [2,5,10]: the long

record is decomposed into short records of variable length

and the break points, which mark the end of consecutive

short records, are determined using the AIC criterion for

ARFIMA models. The short records thus obtained have a

minimum length 512 and are subsequently modelled using

ARFIMA-GARCH models.

3. Results and discussion

The ARFIMA-GARCH approach is applied to 24 hour

HRV recordings of 30 subjects from the Noltisalis database

[8]: 10 healthy subjects (N, 34-56 years), 10 patients suf-

fering from congestive heart failure (C, 36-68 years) and

10 heart transplanted patients (T, 18-60 years).

Figure 3 illustrates the results for a healthy subject-N6

(a), a patient affected by congestive heart failure-C10 (d)

and an heart transplanted patient-T3 (g). The long memory

estimates, d̂, in (b), (e) and (h), change over time and the

recordings present multifractality characteristics [3,5,7].

Moreover, these estimates present a circadian variation,

with lowest values during the night periods. The volatil-

ity parameter estimate, û1, for healthy subjects, in (c), de-

creases during the night period and for sick subjects, in (f)

and (i), is stable during the 24 hours.

The results for the three groups of patients during the

24 hours (P1), 6 hours of night (P2) and 6 hours of day

(P3) periods are summarised in Figure 4 and Table 1. It is

found that long memory increases for sick subjects, both
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Figure 3. Tachograms of three subjects, 24 hours Holter recordings:

(a) healthy subject-N6, (d) patient affected by congestive heart failure-

C10 and (g) heart transplanted patient-T3. Evolution over 24 hours of d̂

in (b), (e) and (h) and û1 in (c), (f) and (i), estimated using ARFIMA-

GARCH models combined with selective adaptive segmentation.

during night and day periods, with the highest values for

transplanted group. This is consistent with previous results

reported in literature concerning the value of global scal-

ing exponent calculated with different methods during the

24 hours [4]. However, ARFIMA-GARCH approach gives

more information, namely the conditional volatility param-

eter u1. This parameter decreases for sick subjects, both

during night and day periods, with the lowest values for

transplanted group. These results suggest that ARFIMA-

GARCH modelling allows to discriminate between the dif-

ferent groups, more clearly during the day periods. Fur-

thermore, the results of this modelling also suggest that

long memory d increases and the conditional volatility u1

decreases with age, as Figure 4 shows for the record N3
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Figure 4. Average estimates and standard deviations of (a) d̂ and (b) û1 for each Holter recording during (◦) 6 hours of night and (•) 6 hours of

day periods. The estimates are obtained using ARFIMA-GARCH modelling combined with selective adaptive segmentation. The subjects N-healthy,

C-congestive heart failure and T-transplanted are ordered by age (ascending) and group estimates are presented on the right of each panel.

which belongs to the eldest subject of the healthy group.

Table 1. d̂ and û1 values for the three groups of patients: healthy, sub-

jects affected by congestive heart failure (CHF) and transplanted, during

24 hours (P1), 6 hours of night (P2) and 6 hours of day (P3) periods. For

each case the average estimates ± standard deviations are presented.

Parameters Healthy CHF Transplanted

Long memory P1 0.44 ± 0.06 0.52 ± 0.14 0.76 ± 0.10
d P2 0.34 ± 0.07 0.38 ± 0.16 0.67 ± 0.17

P3 0.46 ± 0.09 0.59 ± 0.16 0.78 ± 0.12
Volatility P1 0.23 ± 0.09 0.15 ± 0.08 0.11 ± 0.06

u1 P2 0.20 ± 0.04 0.16 ± 0.08 0.11 ± 0.07
P3 0.24 ± 0.14 0.12 ± 0.05 0.10 ± 0.07

4. Conclusion

In this study we focused our attention on the multi-

fractality and conditional volatility characteristics of the

HRV recordings. We employed ARFIMA-GARCH mod-

els which while being popular in other disciplines, namely

economics and finance, are unknown in medical and clin-

ical research. ARFIMA-GARCH modelling combined

with selective adaptive segmentation of 24 hours HRV data

shows that the long memory parameter has a circadian

variation, with different regimes for night and day periods.

Moreover, increased long memory, d, values and decreased

conditional volatility, u1, values for sick subjects, suggest

that ARFIMA-GARCH modelling allows to discriminate

between the different groups.
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