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Abstract

Heart rate asymmetry (HRA) is a quantifiable and visi-

ble phenomena in Poincaré plot which is defined with re-

spect to line of identity (RR(i)=RR(i+1)). In general, third

moment measure (skewness) is most appropriate for quan-

tifying asymmetry of any time series signal. Existing El-

hers’ index (EI) is the third moment measure but it is de-

fined based on the actual time series signal. The aim of this

study is to redefine EI as EIR in view of stated HRA defi-

nition. The new index calculated as a third moment along

the minor axis of the plot from the derived signal along

this axis. To show the benefit of EIR over EI , we have

calculated both index values of 54 Normal Sinus Rhythm

(NSR) and 272 Arrhythmia subjects taken from Physionet

NSR and Arrhythmia databases. The results showed that

EIR (ROC area =0.80) discriminates NSR from Arrhyth-

mia subjects better than EI (ROC area=0.59). This study

could be useful for quantifying HRA in Poincaré plot and

classifying different pathology conditions.

1. Introduction

Intuitively, asymmetry refers to the lack of symmetry i.e,

the distribution of the signal is imbalanced and/or dispro-

portionate [1]. This imbalance or dissimilarity can easily

observe with geometry or physics. Asymmetry is expected

to be present in physiological systems [2] as it is a funda-

mental property of non-equilibrium system [3]. Moreover,

asymmetry is linked with the time irreversibility of the sys-

tem, which is reported as greatest in healthy physiologic

system [1, 17]. Thus, asymmetry represents the presence

of complex nonlinear dynamics in the physiological signal.

Surprisingly, little work has been published in defining and

measuring asymmetry in physiological signal [4].

Heart rate variability (HRV), the variation of the period

between consecutive heart beats over the time, is thought

to reflect the heart’s adaptability to adapt to changing cir-

cumstances. HRV is predominantly dependent on the ex-

trinsic regulation of the heart rate (HR) [5]. Poincaré plot

analysis is one of the popular techniques largely used by

the researchers for both qualitative and quantitative analy-

sis of HRV signal. In various studies, it has been shown to

reveal patterns of heart rate dynamics resulting from non-

linear processes [6, 7]. In general, Poincaré plot of HRV

signal is constructed as a two dimensional plot by plot-

ting consecutive points of RR interval time series (i.e, lag-

1 plot). It is a representation of HRV signal on phase space

or cartesian plane [8], which is commonly used to asses

the dynamics of HRV [6, 9–11]. Tulppo et. al. [6] fitted

an ellipse to the shape of the Poincaré plot and defined two

standard descriptors of the plot SD1 and SD2 for quan-

tification of the Poincaré plot geometry. These standard

descriptor represent the minor axis and the major axis of

the ellipse respectively as shown in figure 1. The descrip-

tion of SD1 and SD2 in terms of linear statistics, given

by Brennan et. al. [7], shows that the standard descriptors

guide the visual inspection of the distribution. In case of

HRV, it reveals a useful visual pattern of the RR interval

data by representing both short and long term variations of

the signal [6, 7].

One of the visible phenomena present in typical

Poincaré plot of HRV signal of healthy subject is asymme-

try (as shown in figure 2), termed as heart rate asymme-

try (HRA), with respect to line of identity (line with slope

450 and passes through the origin). Hence the asymme-

try means imbalance between two parts of Poincaré plot,

points above the line of identity (RR(i)>RR(i+τ ), decel-

eration of heart rate) and points below the line of iden-

tity (RR(i)<RR(i+τ ), acceleration of heart rate). From fig-

ure 2, it is obvious that the number of points above line of

identity is higher than the number of points bellow line of

identity. As a result the line through centroid shifts above

the line of identity, which represents the apparent asym-

metricity in the plot. In one study, authors have exam-

ined the asymmetry of Poincaré plot and showed the rela-

tionship between time reversibility, pattern asymmetry and

nonlinear dynamics [12]. For doing so, the authors have

used three different indexes namely Porta’s index (PI),

Guzik’s index (GI) and Ehlers’ index (EI) [13–15]. In

general, third moment measure (skewness) is most appro-

priate for quantifying asymmetry of any time series signal.

Among the previously used asymmetry indices [13], PI
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Figure 1. A standard Poincaré plot of RR intervals of

a healthy person (N=2000). SD1 and SD2 are the stan-

dard descriptors of Poincaré plot, which measures short

and long term variability of the plot respectively.

and GI represents first and second moment of Poincaré

plot respectively and are based on the HRA definition us-

ing Poincaré plot as previously discussed. In contrast, EI

represents the third moment measure which was defined

based on the original time series and measures the skew-

ness of the RR interval time series rather than visible HRA

phenomena present in Poincaré plot.

The aim of this study is to redefine EI with respect to

stated HRA definition; redefined EI index is termed as

EIR. To prove the importance of redefining the EI in-

dex, we have calculated asymmetry of 54 Normal Sinus

Rhythm (NSR) and 272 Arrhythmia subjects taken from

Physionet NSR and Arrhythmia databases.

2. Methods

2.1. Ehlers’ index EI

Ehlers’ et. al. [15] have used slope asymmetry as a non-

linear feature to measure the brain activity using electroen-

cephalograph (EEG) signal. The slope asymmetry was cal-

culated as the asymmetry of the distribution of the first

time derivative of each EEG signal, which was estimated

by the skewness of differences between successive sam-

ples. Hence, for RR interval time series it can be defined

as:

EI =

∑N−1
i=1 (RRi − RRi+1)

3

(
∑N−1

i=1 (RRi − RRi+1)2)
3
2

(1)

For any time series signal, skewness is a measure of sym-

metry, or more precisely, the lack of symmetry. Distri-

bution of any signal, or data set, is symmetric if it looks

the same to the left and right of the center point. Hence,
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Figure 2. A lag-1 Poincaré plot with line of identity

and line through centroid. SD1u and SD1d represents

the portion of SD1 above and below the line of iden-

tity respectively. The line through centroid indicates that

SD1u > SD1d, which represents the visible asymmetric-

ity in the plot.

Ehlers’ index was appropriate for asymmetry measure of

RR interval time series without considering the Poincaré

plot.

2.2. Modified Ehlers’ index EIR

As mentioned in the definition of HRA, it is measured

with respect to line of identity i.e, the distribution of points

above line of identity does not look same as distribution

bellow line of identity. This indicates that the asymmetry

of the plot should be measured perpendicular to the line of

identity. Let, ith point of lag-1 Poincaré plot is represented

as Pi(x, y) = {RRi, RRi+1}. To calculate the skewness

perpendicular to the line of identity we need to project all

points of Poincaré plot along the minor axis of the fitted

ellipse (figure 1). The general equation for projecting any

point (xi, yi) on some line with slope θ can be written as

(

x′

i

y′

i

)

=

(

cosθ sinθ

−sinθ cosθ

)(

xi − x

yi − y

)

(2)

where, x and y is the centroid of all points Pi(xi, yi) of

the Poincaré plot. Now value for θ is chosen as 450 or 1350

for projecting points over major or minor axis respectively

as shown in figure 3.

However, in this study to measure HRA the univariate

signal was generated by projecting all points perpendicular

to line of identity which passes through the origin. Hence,

projection of all points on the line perpendicular to the line

of identity can be derived using equation 2 as follows:
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Figure 3. Projection of points of Poincaré plot on line

of identity and line perpendicular to line of identity which

passes through centroid of the plotted points.

Pi(u)(x) = (RRi−RRi+1)
2

Pi(u)(y) = (RRi−RRi+1)
2

(3)

where Pi(u) represents the corresponding univariate point

or projected point of Pi. This shift of points from cen-

troid of the plot to the origin does not have any impact on

the skewness value as it is independent of origin and scale

of measurement. Moreover, skewness is a measure to de-

scribe the shape of the function rather than the amplitude

of it. Now EIR is calculated from the projected points as

follows:

EIR =

∑N−1
i=1 (Pi(u)(x) − P(u)(x))3

(
∑N−1

i=1 (Pi(u)(x) − P(u)(x)))
3
2

(4)

where P(u)(x) is the mean of all Pi(u)(x) values.

2.3. ROC area analysis

In order to provide the discriminative performance of all

measures, receiver-operating characteristic (ROC) analysis

was used [16], with the areas under the curves for each

feature represented by the ROC area. A ROC area value of

0.5 means that, the distributions of the features are similar

in two groups with no discriminatory power. Conversely, a

ROC area value of 1.0 would mean that the distributions of

the features of the two groups do not overlap at all. ROC

plots are used to gauge the predictive ability of a classi-

fier over a wide range of threshold values. A threshold

value was applied such that a value below the threshold

was assigned into one category whereas a value equal to

or above the threshold was assigned into another category.

ROC curves were plotted using results to examine quali-

tatively the effect of threshold variation on the classifica-

tion performance. The area under ROC curve was approx-

imated numerically using the trapezoidal rules [16] where

the larger the ROC area the better the discriminatory per-

formance.

3. Results and discussion

Table 1 summarized the mean and standard deviation

(STD) of EI and EIR of three two of subjects. From the

mean value of both EI and EIR, it was obvious that the

arrhythmia subjects are highly positively skewed than the

healthy subjects. The highest ROC area (0.80) between

NSR and Arrhythmia group was found for asymmetry in-

dex EIR as shown in table 1. However, using EI the ROC

area found between two groups was 0.59. The ROC curve

for EI and EIR are shown in figure 4.

Table 1. Mean ± Standard deviation of EI and EIR for

normal and arrhythmia subjects. ROC area is given for

both EI and EIR between two subject groups.

NSR Arrhythmia ROC area

EI 0.24 ± 0.61 1.03 ± 2.39 0.59

EIR 0.54 ± 0.76 1.99 ± 1.65 0.80

Asymmetry is related with nonlinear dynamics and

time irreversibility, which exhibit the most complex inter-

relationships [1, 17]. Guzik et. al. [14] have reported

that the asymmetry in heart rate variability might be re-

lated to the response of the baroreflex to increase or de-

crease the blood pressure [18]. However, exact reason for

such asymmetry is largely unknown. From the result it was

obvious that redefining Elhers’ index improved the detec-

tion of asymmetry and as a result the discriminatory capa-

bility, measured by the ROC area, of the index increased

from 0.59 to 0.80. Moreover, asymmetry was found to

be a promising marker that can be used for differentiating

pathology from healthy condition.

4. Conclusions

A modified Elhers’ index to measure asymmetry in

Poincaré plot is proposed. The proposed modification pro-

vides an improvement in analyzing asymmetricity of HRV

signal. The index EIR has been shown to perform better in

discriminating arrhythmia from normal sinus rhythm sub-

jects using heart rate series. In future, it would be interest-

ing to look at use of redefined index in other pathological

condition.
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Figure 4. ROC curve of EI and EIR. The area under the

curve for EIR (0.80) is significantly higher than EI(0.59).
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