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Abstract 

Electrocardiographic imaging (ECGI) is a widely used 

method of computing potentials on the epicardium from 

measured or simulated potentials on the torso surface. 

The main challenge of the electrocardiographic imaging 

problem lies in its intrinsic ill-posedness, and many 

regularization techniques have been developed to smooth 

out the solution. It is still an ongoing research subject to 

choose proper regularization methods and to determine 

their proper amount for obtaining clinically acceptable 

solutions. This study systematically compares various 

regularization techniques for the ECGI problem under a 

unified simulation framework. The framework consists of 

an electrolytic human torso tank containing a live canine 

heart, with the cardiac source being modeled by 

potentials measured on a cylindrical cage placed around 

the heart. We tested 14 different regularization 

techniques to solve the inverse problem of recovering 

epicardial potentials, and found that non-quadratic 

methods (total variation algorithms) were the most robust 

and resulted in the lowest reconstruction errors. 

 

1. Introduction 

In clinical practice, physicians deduce from a limited 

number of electrocardiographic signals complex 

electrical activities of the heart, which are usually 

simplified in the form of single-dipole, multi-dipole or 

potential distribution models. Such approach to solving 

the electrocardiographic inverse problem, despite often 

qualitative, still represents the cornerstone of a day-to-

day diagnosis.  

During the past 30 years, many research efforts have 

been devoted to exploring and validating the utility of 

electrocardiographic imaging, where potential 

distribution on the epicardial surface is inversely 

computed from a large number of electrocardiograms 

measured both on the anterior and posterior torso surface. 

Epicardial potentials have been recognized to directly 

reflect the underlying cardiac activity and could provide 

an effective means for localizing regional cardiac events. 

Electrocardiographic imaging problem, however, is 

inherently ill-posed in a sense that small errors in body-

surface measurements may result in unbounded errors in 

the reconstruction of epicardial potentials. Given that the 

electrocardiography community has developed a plethora 

of regularization techniques to tackle the ill-posedness 

and to gauge the rapidly oscillating inverse solutions [1-

5], there is a growing need to compare, structure and 

unify those diversified regularization methods by using 

the same volume conductor and the same cardiac source 

models. 

This paper systematically evaluates the performance of 

14 different regularization techniques using a realistic 

human torso model. We compared boundary element 

method and finite element method, two predominant 

methodologies in computing the geometrical and 

electrical properties of the torso volume conductor. 

 

2. Methods 

The electric potential field induced by cardiac 

activities can be modeled by a generalized Laplace’s 
equation defined over the torso-shaped volume conductor 

subject to Cauchy boundary conditions [1-4]. Assuming 

the human torso is homogeneous and isotropic, this 

boundary value problem is solved by the boundary 

element method (BEM), which relates the potentials at 
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the torso nodes (expressed as an m-dimensional vector 

fB) to the potentials at the epicardial nodes (expressed as 

an n-dimensional vector fE), 

     fB =  A fE  ,                                                        (1) 

where A is the transfer coefficient matrix (m * n) and n < 

m. The transfer coefficient matrix depends entirely on the 

geometric integrands, which can be calculated 

analytically. The finite element method (FEM) results in 

similar formalism as in (1) with the difference that the 

FEM discretizes the volume between the torso and 

epicardial surfaces into tetrahedral elements and can 

thereby take into account the electrical anisotropies of the 

volume conductor.  

The matrix A is ill-conditioned, i.e., its singular values 

are limiting to zero with no particular gap of separation in 

the singular value spectrum, yielding a highly unstable 

solution. Regularization is needed to tackle the ill-

posedness and control the wild oscillations in the inverse 

solution. We analyzed in a unified computational 

framework 14 regularization methods, which are 

summarized in Table 1. For the sake of structuring, we 

organized these regularization techniques in 3 groups: 

Tikhonov-based regularizations, iterative methods, and 

non-quadratic regularizations.  

 

 
 

Figure 1. Geometries of the torso and cylindrical cage 

surfaces. Data recorded at 602 leads of the cylindrical 

cage were used to compute torso potentials at 771 nodes 

using BEM and FEM. 

 

 

Our experimental protocol consisted of the following 

steps: 

Step 1. We modeled the cardiac source by using a live 

canine heart which was retrogradely perfused via the 

aorta of another supportive dog. The heart was then 

suspended in the correct anatomical position in an 

electrolytic tank shaped like an adolescent thorax. We 

recorded electric potentials (at 1 kHz) from a 602-lead 

cylindrical cage enveloping the suspended canine heart 

and regarded the cage as the “epicardial” surface. Fig. 1 

shows the geometries of torso and cylindrical cage. Data 

were collected during a sinus rhythm, with the sample 

epochs of 4-7 seconds in duration. 

Step 2. We obtained Eq.(1) by means of the BEM and 

FEM respectively. We then calculated the torso potentials 

at 771 nodes from the cylindrical cage potentials. Both 

methods assumed the volume conductor was 

homogeneous and isotropic. Three measurement noise 

levels (20 dB, 40 dB, 60 dB) were added to the torso 

potentials to mimic experimental measurement 

conditions. 

 

 

Table 1. Summary of 14 regularization techniques 

employed in our study. Techniques are subdivided into 3 

main categories: Tikhonov-based regularizations (Group 

A), iterative methods (Group B), and non-quadratic 

methods (Group C). 

 

Group Acronym Short description Ref. 

 ZOT Zero-order 

Tikhonov 

[6,7] 

A FOT First-order 

Tikhonov 

[4] 

 

 SOT Second-order 

Tikhonov 

[7] 

 

 ZCG Zero-order 

Conjugate 

Gradient 

[8] 

 FCG First-order 

Conjugate 

Gradient 

[8] 

 SCG Second-order 

Conjugate 

Gradient 

[8] 

B ZLSQR Zero-order LSQR [9] 

    

 FLSQR First-order LSQR [9] 

 SLSQR Second-order 

LSQR 

[9] 

 TSVD Truncated 

Singular Value 

Decomposition 

[10] 

 Ȟ Ȟ-method [10] 

 FTV Total Variation [2,4] 

C STV Total Variation 

with Laplacian 

[2,4] 

 LASSO Least Absolute 

Selection and 

Shrinkage 

Operator 

[11] 
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Step 3. The 602-lead cylindrical cage potentials were 

reconstructed by the 14 regularization techniques 

summarized in Table 1. We used the transfer matrix 

resulting from the BEM and the FEM, respectively. 

Step 4. We evaluated the accuracy of the inverse 

solution in terms of its normalized rms (root-mean-

square) error RE = ||fE
c
 – fE

m
||2 / ||fE

m
||2, and the 

correlation coefficient, CC = fE
c
 ā fE

m
 / ||fE

c
||2 ||fE

m
||2, 

where fE
m
 is the measured cylindrical-cage potentials 

fE
c
 is the computed potentials. We also examined the 

qualitative features of potential maps, both measured and 

inversely computed ones (e.g., areas of negative 

potentials, positions of extrema). 

 

3. Results 

Table 2 illustrates reconstruction results during the 

initial phase of the QRS complex, from the Q-onset to the 

peak of the Q-wave, using the BEM with 40-dB input 

noise. Despite the low-signal-to-noise ratio after the 

onset, the normalized RMS error of the reconstructed 

cage potentials ranged 0.22-0.36, and the correlation 

coefficients ranged 0.93-0.98, depending on the 

regularization technique used. It is evident that the most 

robust performance throughout the sequence was attained 

by the non-quadratic methods, either in the form of the 

total variation method (FTV) or the total variation 

algorithm, whose gradient operator was replaced by a 

Laplacian operator (STV).  

Figure 2 depicts the body-surface potentials, the 

measured and calculated cage potentials at 5 ms after the 

onset of the Q wave. The simulation was carried out by 

the BEM, and the cage potentials were inversely 

computed by the FTV and STV. The body-surface 

potentials exhibited initial anterior maximum, resulting 

from the septal activation of the left ventricle. Both FTV 

and STV captured well the qualitative features of the 

cage potentials, with STV providing smoother solutions.  

Table 3 summarizes results for standard reference 

points of the sinus rhythm (peaks of P, R, S, and T 

waves), again using the BEM with 40-dB input noise. 

Similar to Table 2, both non-quadratic regularization 

techniques (FTV, STV) performed consistently better 

than other 12 methodologies tested. There were, however, 

time instants when there were little differences among 

various regularization techniques, and when some 

Tikhonov regularizations (FOT, SOT) and iterative 

regularizations (FCG, SCG, FLSQR, SLSQR) were on a 

par with the non-quadratic techniques. Closer inspection 

of the cage potentials revealed that during those time 

instants, potential distributions were dipolar (i.e., 

exhibiting only a single maximum and minimum) and 

had rather simple spatial features (e.g., well separated 

extrema). Even in such cases, results suggest that FTV 

and STV still outperformed other techniques when the 

noise level was increased from 40 dB to 20 dB.    

Comparison between BEM and FEM showed little 

difference, with BEM performing somewhat better than 

FEM. The difference between both methods was due to 

lower condition number of matrix A generated by the 

BEM than that by the FEM (by a factor of 73.1). Note 

that our comparison was based on an isotropic and 

homogeneous volume conductor model. The FEM is 

superior to the BEM in incorporating complex electric 

properties of the volume conductor.  

Computational times of individual regularization 

techniques varied, with the iterative methods being the 

fastest (2 sec per reconstruction on average). Since 

Tikhonov and non-quadratic regularizations employ 

penalty functions, we needed to compute a large number 

(typically 20 to 40) of regularized solutions before 

determining the optimal one. Consequently, it took on 

average 8 sec per reconstruction when using Tikhonov 

and 180 sec when using FTV and STV. Among non-

quadratic methods, LASSO required the least 

computational time (less than 2 sec per reconstruction).  

 

A B

C D

 
 
Figure 2. Potential distributions at 5 ms after the onset of the Q 

wave. (A) Torso potentials computed from the measured 

cylindrical cage potentials using boundary element method 

(BEM). (B) Measured cylindrical cage potentials. (C) Inversely 

computed cylindrical cage potentials using the totals variation 

method (FTV). (D)  Inversely computed cylindrical cage 

potentials using the totals variation algorithm with the 

Laplacian instead of a gradient operator (STV).  
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4. Discussion and conclusions 

This study compared the performance of various 

regularization techniques using a unified computational 

framework derived from a realistic torso model with a 

canine heart. Our main finding is that non-quadratic 

methods (FTV and STV) have proven more robust to the 

complexity of the spatial patterns and noise in 

reconstructing the cylindrical-cage potentials. This 

conclusion is in agreement with the recent study of Gosh 

and Rudy [4], who noted that FTV method (also called 

L1 regularization) may better capture the spatial patterns 

of epicardial potentials than other techniques, which 

minimize the square of the norm.  

Our future work includes developing experimental 

protocols that will identify the sites of early activation 

during pacing and in the circumstances of infarcted 

hearts. 

 

References 

 
[1] Oster HS, Taccardi B, Lux RL, Ershler PR, Rudy Y. 

Noninvasive electrocardiographic imaging: Reconstruction 

of epicardial potentials, electrograms, isochrones and 

localization of single and multiple electrocardiac events. 

Circulation 1997, 96: 1012-1024. 

[2] Brooks DH, Srinidhi KG, MacLeod RS, Kaeli DR. 

Multiply constrained cardiac electrical imaging methods. 

Subsurface Sensors and Applications, Proc. SPIE 3752, 

pp.62-71, 1999. 

[3] Hren R. Value of epicardial potential maps in localizing 

pre-excitation sites for radiofrequency ablation. A 

simulation study. Phys. Med. Biol. 1998, 43:1449-1468. 

[4] Ghosh S, Rudy Y. Application of L1-norm regularization 

to epicardial potential solution of the inverse 

electrocardiography problem. Ann. Biomed. Eng. 2009, 

37: 902-912. 

[5] Horacek BM, Clements JC. The inverse problem of 

electrocardiography: a solution in terms of single- and 

double-layer sources of the epicardial surface. Math Biosci 

1997, 144: 119-154.  

[6] Tikhonov A, Arsenin V. Solution of Ill-Posed Problems. 

Washington, DC: Winston, 1977. 

[7] Brooks DH, Ahmad GF, MacLeod RS. Inverse 

electrocardiography by simultaneous imposition of 

multiple constraints, IEEE Trans. Biomed. Eng. 1999, 46: 

3-18. 

[8] Hanke M. Conjugate Gradient Type Methods for Ill-Posed 

Problems. Harlow: Longman Scientific & Technical, 1995. 

[9] Paige CC, Saunders MA. LSQR: An algorithm for sparse 

linear equations and sparse least squares, ACM 

Transactions on Mathematical Software 1982, 8: 43-71. 

[10]  Hansen PC. Rank-Deficient and Discrete Ill-Posed 

Problems. Philadelphia: SIAM, 1998. 

[11] Schmidt M. Least Squares Optimization with L1-Norm 

Regularization, Project Report , University of British 

Columbia, 2005 

 

Address for correspondence 

 

Matija Milanič, PhD 

Institute Josef Stefan 

Jamova 39  

1000 Ljubljana 

Slovenia  

E-mail address: matija.milanic@ijs.si  

Table 2. Root-mean-square (rms) errors for reconstruction results during the initial phase of the QRS complex, from the 

Q-onset to the peak of the Q-wave, in the presence of a 40-dB noise and when using BEM.  Q5 refers to the potential 

distributions at 5 ms after the Q-onset; the same applies to Q10 and Q15;  Qpk  refers to the distributions at the peak of the 

Q-wave. See Table 1 for explanations of acronyms describing regularization methods.  

 ZOT FOT SOT ZCG FCG SCG ZLSQR FLSQR SLSQR TSVD Ȟ FTV STV LASSO 

Q5 0.32 0.22 0.22 0.32 0.25 0.25 0.32 0.25 0.25 0.33 0.32 0.23 0.22 0.36 

Q10 0.26 0.11 0.10 0.26 0.11 0.11 0.26 0.11 0.11 0.27 0.26 0.15 0.12 0.26 

Q15 0.30 0.18 0.16 0.26 0.19 0.15 0.26 0.19 0.15 0.27 0.27 0.14 0.13 0.27 

Qpk 0.49 0.43 0.39 0.40 0.45 0.38 0.40 0.45 0.38 0.44 0.45 0.31 0.25 0.40 

               

 

Table 3. Root-mean-square (rms) errors for reconstruction results for standard reference points of the sinus rhythm (peaks 

of P, R, S, and T waves)  in the presence of a 40-db noise and when using BEM. See Table 1 for explanations of 

acronyms describing regularization methods. 

 ZOT FOT SOT ZCG FCG SCG ZLSQR FLSQR SLSQR TSVD Ȟ FTV STV LASSO 

P 0.47 0.43 0.42 0.47 0.45 0.45 0.47 0.45 0.45 0.51 0.48 0.37 0.41 0.45 

R 0.45 0.40 0.39 0.40 0.40 0.38 0.40 0.40 0.38 0.42 0.43 0.35 0.33 0.40 

S 0.48 0.42 0.40 0.47 0.45 0.44 0.47 0.45 0.44 0.50 0.49 0.37 0.40 0.45 

T 0.27 0.16 0.16 0.26 0.16 0.16 0.26 0.16 0.16 0.27 0.26 0.17 0.16 0.26 
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