
Reconstruction from experimental data of a mathematical model of cardiac

tissue: A feasibility study

T Bakir, B Xu, S Jacquir, S Binczak

Laboratoire LE2I UMR CNRS 5158, Université de Bourgogne, Dijon, France

Abstract

The aim of this work is to study the feasability of recon-

struction mathematical model of cardiac tissue from in-

tracellular recordings. It is studied using simulated data

and the presented method is applied to the Aliev-Panfilov

model. A dissociated scheme is proposed and the estima-

tion of some parameters is investigated in case of ideal or

noisy data. The influence of the number and distribution of

electrodes is then studied.

1. Introduction

Multielectrodes arrays (MEAs) are widely used in ex-

perimental investigation of cellular activities in cardiac

domains [1–4]. The MEAs allow extracellular potential

recordings of cardiac cells in culture in vitro. Recorded

signals can be analyzed by mathematical models. Usu-

ally, these models use normalized parameters and describe

qualitatively the dynamics of the cardiac cells electrical ac-

tivities. Another approach is to identify intrinsic param-

eters resulting of experimental signals and to establish a

cardiac cell inspired model. This approach is based on es-

timation and identification of parameters largely used in

the optimization theory. The methodology consists firstly

on a choice of an adequate model. Then, an enough num-

ber of signals must be recorded to identify the unknown

parameters of the model. However, the number, the size

and the distance between electrodes are limited because

of physical constraints (surface, types of electrodes, price,

acquisition setup). The proposed method focused on the

estimation of the intracellular coupling and the parame-

ter describing the sodium current (conductance and thresh-

old). Furthermore, in this paper, the relation between the

number of electrodes and the accuracy of estimated param-

eters is investigated. Our results suggest that there exists

a compromise between the number of electrodes and the

values of model parameters which emulate closely the car-

diac cells electrical activities. The effect of noise, usually

present in experimental data, is measured.

2. Methods

2.1. Model description

Although there exist methods to construct models with-

out no a-priori knowledge about the system [5], it is usu-

ally preferable to use already existing ones especially if

one wants to relate the estimated parameters to a biophysi-

cal analysis. Therefore, the problem consists to find a good

correlation between obtainable experimental data, such as

intracellular potentials, and parameters describing a rea-

sonable mathematical model. A generic representation of

the electrical activity in cardiac tissue can be written [6, 7]

so that

C
∂u

∂ t
= ∇[D∇u]+ Iion , (1)

where u is the transmembrane voltage, C the capacitance of

the membrane of cardiac cells, D corresponds to the cou-

pling between cells due to gap junction and Iion represents

the total ionic current flowing through the membrane. It

is composed of individual ionic currents which are often

dynamic functions of u itself.

In space-clamped mode, system (2) reduces to

C
du

dt
= Iion . (2)

The number of ionic currents and their related expressions

define the model under investigation. For every kind of

current description, the problem of correlating them to

experimental data corresponds to identify the parameters

used in the considered model. In every case, they are con-

stant parameters. A major step has been performed in [8]

where the authors proposed successfully a method to esti-

mate these parameters in the case of space-clamped mode.

They applied it to obtain a good estimation of the 63 pa-

rameters used in the Beeler-Reuter model. All ionic cur-

rents could be reasonably reconstructed using an exper-

imental design consisting of action potential recordings

perturbed by pseudo-random injection currents. The es-

timation process used a least squares fit approach and as-

sumed that only the transmembrane action potential wave-

form is recorded. This method is applied to the Beeler-

Reuter model but could be generalized to others. Although
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opening up the possibility of formulating cell-specific re-

constructions of underlying ionic mechanisms, the fact that

it is based on the space-clamped method forbids extracting

information about the coupling between cells, that is the

strength of connexons and how they weave the cardiomy-

ocytes networks. Actually the MEA technology allows us

to investigate this missing spatial dimension, due its pe-

riodically distributed numerous electrodes. The recorded

data are field potentials but it is possible to reach experi-

mental transmembrane voltages, as in a first approximation

by integrating them over time. A first question arises about

how to take benefit from the method proposed in [8] while

adding a spatial dimension to the reconstruction problem.

In order to keep this ionic currents identification method,

a dissociated scheme is proposed and presented in the next

paragraph. It is applied to the Aliev-Panfilov model [9],

but could be also generalized to other models. This model

can be expressed such as



















∂u

∂ t
= ∇[D∇u]− ku(u−a)(u−1)−uv

∂v

∂ t
= ε(u,v)[−v− ku(u−a−1)] ,

(3)

where ε(u,v) = ε0 + µ1v/(u+ µ2).

2.2. A dissociated scheme

A choice of parameters in system (3) leading to a bio-

physically reasonable action potential shape is so that ε0 ≪

1 while µ1 ≈ 0.1 and µ2 ≈ 0.2. Furthermore, in this nor-

malized model, the resting state of the system is such as

(u,v) = (0,0). It implies that, as u > v, system (3) is a

slow-fast system where the fast variable is u and the slow

one v. It yields the fact that the leading edge of the pulse

which is a fast process is mainly obtained by the bistable

equation [10] :

∂u

∂ t
= ∇[D∇u]− ku(u−a)(u−1) . (4)

In this system, the cubic function corresponds to the con-

tribution of the sodium current and a leak potassium one

and is completely defined by the parameters k and a. It

keeps the coupling between cells, given by D.

Figure 1 shows a good match between the leading edge of

the action potential obtained with eq. (3) (straight line) and

the corresponding leading edge resulting from eq. (4) with

the same parameters (dashed line).

Assuming that the slow-fast property is assured in bio-

logical conditions, it is therefore possible to split the prob-

lem of identification into two parts : In a first place, by fo-

cusing on the leading edge of the action potential, a method

can be designed to estimate the values of the parameters
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Figure 1. Action potential shape (straight line) obtained by

integrating eq. (3) and leading edge shape obtained from

eq. (4). A square tissue of 200×200 cells has been simu-

lated in both cases with Neumann conditions on its border.

The initial conditions led to a planar propagation. The pre-

sented signals correspond the transmembrane voltage of

cell (100,100) at the middle of the tissue. Parameters :

D = 1, a = 0.1, k = 1, ε = 0.005, µ1 = 0.1 and µ1 = 0.2.

involved in eq. (4), that is k, a and D. This estimation

process is presented in the next section. Then, these pa-

rameters known, one can use the method proposed in [8]

to obtain the remaining parameters in system (3). It could

be performed on the whole signal. As this method has al-

ready been fully described in [8], we will focus only on the

first part of this process. Note that this dissociated method

can be applied to any system described by

∂u

∂ t
= ∇[D∇u]− ku(u−a)(u−1)+ Islow , (5)

where Islow corresponds to ionic currents varying slowly in

time. These currents can be identified with the method de-

scribed in [8], while the parameters of the bistable equation

are obtained as presented in the next section.

2.3. Estimation and identification methods

description

The state equation of model (5) is given in a discrete

functional framework and the identification problem will

be considered in this framework. A descent method will

then be used in order to find a numerical solution to the

problem. The cost functional to be minimized is quadratic

function. The discrete approximation approach permits the

exact numerical computation of the cost functional gradi-

ent. Potential and current measures are used and results

of identification obtained with removing the contours and

electrode’s matrix sparseness are compared. The system

identification problem consists of estimating parameters
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based on observed input-output data using the model struc-

ture described above. A quadratic criterion is used to select

particular parameters set which gives good approximation

of the process behaviour. In general terms, an identifi-

cation experiment was performed by exciting the system

and observing its input and output over a time interval.

These signals were recorded. Then a parametric model of

the process was fitted to the recorded input and output se-

quences. For the identification task, two approaches are

used. The first one consists on defining a matrix of elec-

trodes and removing contours until have a matrix of dimen-

sions 1×1 (meaning one electrode surrounded by its four

nearest neighbouring electrodes) or 2×2. The parameters

identification is performed for each matrix found. The sec-

ond approach consists on electrode’s matrix sparseness by

removing a pair of lines and columns gradually until the

matrix is completely sparse, as illustrated in figure (2).
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Figure 2. Scheme of sparsing electrode matrix (◦ sym-

bols). The removed electrodes are striped.

Both approaches were applied on a simulated cardiac

tissue modeled by the Aliev-Panfilov model with follow-

ing fixed parameters: D = 1, a = 0.15, k = 8, ε0 = 0.002,

µ1 = 0.2 and µ2 = 0.3, which satisfies the conditions of

the dissociated scheme. In order to estimate D, a and k,

initial conditions have been set so that a planar action po-

tential could propagate through the simulated tissue. The

border of the medium follows zero-flux (Von Neumann)

conditions and is not taken into account in the identifica-

tion process : No electrode lies on the edge.

3. Results

3.1. Estimation with fixed density of elec-

trodes

In this section, the first approach has been used: The

density of electrodes is kept constant (one electrode for

each cardiac cell) but their number is decreased by remov-

ing contours. The results are presented on Fig. 3.

All the parameters are well estimated whatever the num-
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Figure 3. Estimated parameters with local fixed density of

electrodes in function of the number of electrodes.

ber of electrodes used. Nevertheless, more electrodes leads

to a faster convergence. This result shows the feasability

of the method when the data used are ideal.
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Figure 4. Estimated parameters in case of noise with local

fixed density of electrodes in function of the number of

electrodes.

Biological systems are usually perturbated by intrinsic

or extrinsic noise. In order to study the sensibility to noise

of this method, we added 5% of white noise independendly

on each electrodes. The influence of this perturbation on

the identification process is given in Fig. 4 for which

the estimated parameters converge to unexpected and false

values. Note that the exact profile of the leading edge was

obtained when the model was simulated with these values.

In order to minimize these effects, a simple first order fil-

tering on the signal has been applied, which improved the
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estimation, as illustrated in Fig. 5, especially when enough

electrodes are used. Not that in the case 1× 1, the esti-

mation is correct but not accurate, which forbids a good

identifiaction in case of inhomogeneous coupling.
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Figure 5. Estimated parameters in case of noise with pre-

filtering with local fixed density of electrodes in function

of the number of electrodes.

3.2. Estimation with sparsing matrix of

electrodes

The influence of sparsing of electrodes, that is an in-

creased distance between electrodes has been investigated

and the results are presented in Fig. 6. An increased dis-

tance between electrodes does not seem to affect the es-

timation, although it implies a slower convergence. The

effect of noise is similar to the case of section 3.1 but is

well minimized by a prefiltering stage.

4. Conclusion

A study on the feasability of reconstruction of model

from experimental data has been presented. It is based

on a dissociated scheme and focused on some parameters

including the coupling strength between cells. We con-

clude frome the results obtained on a simulated tissue that

it is possible to reach an accurate estimation, especially

when the signal are ideal. In case of noise, a prefiltering

is needed. An increased but reasonable distance between

electrodes is not cumbersome, which opens up the possi-

bility to apply this method to data from MEA, for which

a typical distance between electrodes could correspond to
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Figure 6. Estimated parameters in case of sparsing matrix

of electrodes in function of the number of electrodes.

five size of cardiac cells. Further work will be devoted to

study this possibility.
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