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Abstract

The activation-based inverse problem of electrocardiog-

raphy is non-linear in the desired activation times. Current

solutions rely on iterative algorithms. There is consider-

able interest in improved initialization approaches due to

the importance of the initialization used. Recent efforts in-

clude the critical point algorithm of Huiskamp and Green-

site and the fastest route algorithm of van Dam, Oosten-

dorp, and van Oosterom. In this work we analyze the re-

lationship between these two methods. We also suggest

an alternative to the shortest path approach to represent

the set of likely activation patterns that may have com-

putational advantages. We also explore modifications to

these two methods exploiting their relationship and using

the new activation patterns. We use epicardially stimu-

lated data and geometries, recorded at the Cardiovascular

Research and Training Institute in Utah, and geometries

and forward matrix supplied with the ECGSim software,

to compare results.

1. Introduction

The activation-based inverse problem of electrocardio-

graphy is to find the activation (depolarization) times of

nodes on the heart from body surface potential (BSP) ob-

servations and is non-linear in the desired activation times.

Current solution methods rely on iterative algorithms and

the results are typically highly dependent on the initializa-

tion used. Thus there has been considerable interest in im-

proved initialization approaches such as the shortest path

- fastest route methods of van Dam, Oostendorp, and van

Oosterom and the critical point method of Huiskamp and

Greensite[1–7].

In this work, we begin with an introduction to the fastest

route and critical point algorithms, analyze the relation-

ship between them, and explain how they can combined

advantageously. We suggest an alternative to the short-

est path (fastest route) approach to finding candidate acti-

vation patterns on the heart, based on the geometry, and

use these activation patterns to introduce modifications to

the fastest route and critical point algorithms to create two

new algorithms. We compare results for a variety of ac-

tivation patterns for epicardially stimulated data recorded

at the Cardiovascular Research and Training Institute in

Utah, and converted to the geometries supplied along with

the ECGSim software.

2. Methods

Our algorithms are modifications to two existing algo-

rithms: the fastest route algorithm and the critical point al-

gorithm. First we will introduce the existing methods, dis-

cuss their relationship, and suggest a modification to each

one that takes advantage of this relationship.

2.1. Fastest route algorithm (FRA)

The fastest route algorithm uses the heart geometry to

derive likely activation patterns and then compares the

body surface potentials predicted by each such pattern

to measured data using a correlation approach [1, 2]. In

this single-activation case, in Table 1, the heart geome-

try’s nodes V and edges E are treated as a graph G =
(V,E), and candidate activation patterns are derived as

shortest path propagations along the graph’s edges. In

the multiple-activation case, not explained in detail here,

multiple such patterns are combined to create more com-

plex activation sequences using a “first-come, first-served”

approach [3, 4]. In both cases, the pattern that serves as

the initialization for the iterative solution is that whose

ISSN 0276−6574 189 Computers in Cardiology 2009;36:189−192.



Table 1. Single-Activation Fastest Route Algorithm

Given: Heart graph G, propagation speed ν,

initial activation time t0, BSPs Y , forward matrix A
1. Find the shortest paths through G from every node

2. Calculate candidate activation timings P from

shortest paths assuming unit propagation speed

3. Adjust duration and start times by multiplying

by ν and adding t0 to the timings in P
4. Form a candidate activation matrix Hi

for every Pi in P s.t. its rows are smoothed step

functions phase-shifted by the timings in Pi

5. Choose the initialization τ as the Pi that results

in the highest correlation between Y and AHi

Table 2. Critical Point Algorithm

Given: BSPs Y , forward matrix A

Let: feval(Ut, i) =
(

1−
A′

:,iUtUt
′A:,i

‖A:,i‖2

2

)−1

First do (1-3) for every node i and every time t:
1. Create Y −

t and Y +
t as the past and future BSPs

2. Find their noise subspaces U−
t and U+

t from SVD

3. Calculate zero-crossing matrix Z as

Zi,t = feval(U
−
t , i)− feval(U

+
t , i)

4. Choose the initialization τ such that every τi

equals the t at which Zi,t crosses zero

forward-predicted BSPs have the highest correlation with

the observed BSPs.

2.2. Critical point algorithm (CPA)

The critical point algorithm, in the implementation com-

monly in use in Table 2, projects single-node activations

onto the noise subspace of the data. Small projections in-

dicate nodes which “initiate” local activation spread, along

with the associated activation timing [6,7]. In effect the as-

sumption is that the final activation sequence is the super-

position of independent single-node activations. This can

be seen in the feval function, which is based on projecting

single columns of the forward matrix A into the noise sub-

space Ut. In this implementation, the initialization for the

iterative solution comes from determining when, in time,

the presence of a single node’s forward contribution transi-

tions from the future (the subspace for the later data, U−
t )

to the past (the subspace for the earlier data, U+
t ), which

is equivalent to finding the zero-crossings in the Z matrix

for each node.

2.3. Relationship between FRA and CPA

FRA and CPA both rely on two common parts: acti-

vation pattern generation and evaluation. As explained

above, FRA generates patterns using a shortest path search,

enforcing spatial regularity that CPA, which generates sin-

gle activations of each node, may be missing. Furthermore,

FRA evaluates each pattern using a correlation measure,

whereas CPA evaluates by projecting into relevant sub-

spaces. By borrowing from another method’s generation

or evaluation parts, or otherwise modifying them, either of

these methods can potentially be enhanced.

2.4. Modifications to existing methods

To demonstrate their relationship, we modified each al-

gorithm such that they share a new generation step in com-

mon, and also adjusted the evaluation step of CPA to take

advantage of such a change.

Activation pattern matrix: We use a geometrically-

derived activation pattern matrix, W , as an alternative to

the shortest path search, to represent the set of likely acti-

vation patterns to be tested. Each element of the matrix is a

weight between nodes m and n on the heart and is assigned

as

Wm,n = exp
(

−d2
m,n/(2σ2)

)

where dm,n is the Euclidean distance between the nodes,

and σ is a parameter which controls the width of the in-

verse exponential function. We then normalize each col-

umn n of W by its maximum value,

W:,n ←W:,n/ max(W:,n)

so that those elements corresponding to nodes close to n
are 1 and exponentially decay to 0 for those further away.

In this form, the columns of W are spatial windows

used to modify CPA. However, with a small modification

to these windows, we can create candidate activation pat-

terns to modify FRA. When subtracted from a vector of

ones, each column of W is a “normalized” activation pat-

tern that can be scaled to the desired duration and added to

a constant so that the pattern starts at the desired time.

Modified FRA: In the case of FRA, the primary purpose

of our modification is to be able to obtain similar results to

the single-activation FRA with a simple alternative to run-

ning a shortest path algorithm on the graph derived from

the heart geometry. This method substitutes the candidate

initializations in FRA with those derived from the columns

of the W matrix above. Each column of W is then taken

as a candidate “shortest path” type pattern, and the corre-

lation to the resulting predicted body surface potentials is

used to choose the best pattern. Each column is first sub-

tracted from a vector of ones, scaled by the duration of

QRS, TQRS, and then shifted in time by adding a constant,

t0, corresponding to the start of QRS, which we assume to

be known in this work, to create a resulting pattern Pi:

Pi = TQRS(1−W:,i) + t0
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For each such candidate Pi, we populate the rows of an

activation matrix Hi with smoothed step functions phase-

shifted (in the columns, which index time) by the elements

of Pi [8]. We choose as τ , our initialization, as whichever

candidate forward-predicted BSPs have the highest corre-

lation with the observed BSPs. The only way in which this

differs from the standard single-activation version of FRA

in Table 1 is the way in which each activation pattern Pi is

generated.

Modified CPA: For this method the intention of our modi-

fication is to achieve a potential qualitative improvement

in the spatial characteristics of the initial estimate, sub-

ject to choice of σ parameter. This method substitutes the

single-node activations in CPA with the spatial windows

in the columns of the W matrix. So rather than projecting

a single column of A into the noise subspace, this method

projects a linear combination of the columns of A weighted

by the window, thus imposing some spatial regularity on

the method. To be more specific, the evaluation function

becomes

feval(Ut, i) =

(

1−
(AW:,i)

′UtUt
′(AW:,i)

‖AW:,i‖22

)−1

and the rest remains the same as the critical point algorithm

in Table 2. We note that when W = I , the identity matrix,

this algorithm reduces to the critical point method.

2.5. Experiments

To experiment with our methods, we used epicardially

stimulated data recorded on the epicardium of a canine

heart at the Cardiovascular Research and Training Insti-

tute (CVRTI) in Utah. We calculated the activation times

from the recorded data, and projected these values from the

geometry of the Utah epicardium to just the epicardium

of the Nijmegen heart, the default geometry provided by

ECGSim (which also provides the corresponding forward

matrix) [9]. We completed the activation timings on the

Nijmegen heart by propagating the values to the endo-

cardium using SCIRun [10]. We simulated the correspond-

ing BSPs by forward-computing them from our activation

times and adding noise with a signal-to-noise ratio (SNR)

of 30 dB. Thus our experiments consisted of running the

various initialization methods on the Nijmegen geometries

with this set of data, converted from data recorded on dif-

ferent geometries in Utah using a set of data conversion

methods.

3. Results

For these experiments, we chose values of σ such that it

was parameterized by β as σ = βdmin+(1−β)dmax, where

dmin and dmax are the minimum and maximum distances

Figure 1. Results of FRA, its modified version (β = 0.6

chosen from generated β = 0.5, 0.6, 0.7, 0.8) , and the true

activation times.

between nodes in the geometry, respectively. Results were

visualized with map3d [11]. The activation pattern ma-

trix is a substitute for the shortest path search in FRA. As

Figure 1 shows, similar results can be obtained by several

activation patterns generated using our method (β = 0.5,

0.6, 0.7, 0.8). Figure 2 shows the results of modified CPA

for a range of β values. By changing the β parameter in the

modified version of CPA, one can obtain initializations of

varying spatial regularity. We can see that the contour lines

show a gradual change in the shape of the resulting activa-

tion patterns as β is increased, until the result for β = 0.95
is nearly the same as CPA itself. Comparing these to the

true timings in Figure 1, we see that the modified version

of CPA has certain shapes in its contours that are missing

from CPA.

4. Discussion and conclusions

In this work, we have explained the relationship between

two recent methods for initializing iterative solutions to the

activation-based inverse problem of electrocardiography,

suggested a new method for generating activation patterns,

W , and modified the two related algorithms to create new

ones. A simple modification to our method would allow

for W to account for varying propagation speeds, as some-

times done in FRA. However, we still need to consider how

our generation method can be used to combine multiple ac-

tivations. As for CPA, any other method to create W can be
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Figure 2. Results of CPA and modified values of β = 0.7, 0.81, 0.84, 0.87, 0.89, and 0.95.

used to modify it in a similar way, with possibly improved

results. Finally, we have used two different open software

packages, including open conversion routines that we in-

tend to make available soon, along with freely available

datasets and geometries in this work. Now we can com-

pare results in a common software framework with com-

mon data and we hope that our effort will contribute to a

goal of increasing reproducibility and interoperability of

research efforts in inverse electrocardiography.
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