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Abstract

In this paper a reliable single-lead real-time cardiac

monitoring algorithm for extremely limited hardware plat-

forms is presented. The algorithm performs robust detec-

tion and classification for QRS complexes as well as a

trusted recognition method for certain cardiac events in-

cluding life-threatening arrhythmias. The ECG analyzing

software is developed for clinical and home care applica-

tions, validated in real environments and implemented in a

portable battery-powered device with up to seven-day op-

erating time and low-power consumption. The whole ECG

software implementation requires only 537 Bytes of RAM

memory and round 20 kilobyte of ROM flash memory. The

QRS detector achieved a sensitivity (Se) of 99.48% and

a positive predictivity (P+) of 99.67 % after analyzing the

first channel of all MIT-BIH Arrhythmia Database records,

while a Se of 99.50% and a P+ of 99.33% were attained

after considering the first lead of all records provided by

AHA Arrhythmia Database.

1. Introduction

Cardiac monitoring continuously provides instant as-

sessment of the patients’ heart rhythm. In this work, an

ECG monitoring algorithm is designed and implemented

on an single-channel portable ECG device with up to

seven-day operating time. The device is supported with an

extra feature allowing transmission of selected ECG seg-

ments using bluetooth technology. This device is powered

by a micro-controller with 56KB ROM, 2KB RAM, 200

Hz A/D converter and 8 MHz clock speed. The algorithm

software occupies only 20 KB of flash ROM and uses 537

Bytes from the memory RAM. Therefore, the design and

the implementation of the corresponding analyzing soft-

ware were quite challenging.

Many efforts were made so far to provide robust mobile

cardiac real-time monitoring systems. González et. al [1]

have developed an algorithm for two-lead ECG monitoring

system supported by the same micro-controller used in this
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Figure 1. The workflow diagram for the single-channel

ECG portable monitoring process implemented in this

work.

work. However, the validation of this algorithm was car-

ried out on another database than conventional MIT/AHA

databases. Another work done by Valenza et. al [2] imple-

mented a Kohonnen Self Organizing Map (KSOM)-based

algorithm in a wearable real-time system for detection of

significant cardiac arrhythmias. The system presented by

[2] requires a long off-line training phase and relatively

high memory usage. Furthermore, the implemented algo-

rithm was validated using part of MIT database signals. In

the work presented in [3], a single-channel QRS detector

was developed on a micro-controller with even more lim-

ited resources than we used in this work. The performance

of this algorithm for QRS complex detection was tested

on MIT and AHA databases and the corresponding results
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were very promising . However, in [3] no real-time classi-

fication or cardiac event method was provided along with

the QRS detection implemented.

The monitoring algorithm presented in this paper is able to

localize and classify cardiac cycles as well as to detect dif-

ferent cardiac events including life-threatening ventricular

tachycardia in real time.

2. Methods

2.1. Motivation

The single-channel ECG portable monitoring software

algorithm developed in this work consists of five ma-

jor stages, namely ECG signal pre-processing, heart beat

detection, similarity and dissimilarity feature extraction,

heart beat classification and cardiac event detection includ-

ing post-classification, see figure 1.

2.2. Pre-processing

In order to reduce the effect of the baseline wander in

ECG signal and to provide high response for steep slopes

like QRS complexes, one stage moving window median

filter with 300msec window length was applied. Thus,

the complexes can be distinguished more easily from other

low-frequency components of ECG, like T and P waves.

Due to the modest resources of the hardware platform, it

was not possible to employ additional digital filters, for in-

stance to remove high-frequency noise components and so

on. Figure 2 presents the output of a one stage moving

window median filter on an arbitrary input ECG signal.

As illustrated in this figure, the baseline wander distortion

in the raw ECG signal is completely removed in the out-

put signal. Besides, the low-frequency components of P

and T waves are highly suppressed compared to the high-

frequency components of QRS complexes.

2.3. Heart beat detection

The procedure of heart beat detection implemented in

this analyzing software is adopted from the idea of local-

ization algorithm used originally by Hannover ECG Sys-

tem (HES) [4]. Detecting the ventricular activities in

the input ECG signal is accomplished in three main steps,

namely signal transformation, signal conditioning and sig-

nal thresholding. This process is carried out on the output

signal of the preprocessing step, presented in section 2.2.

∙ Signal Transformation: It implies a so-called spatial-

velocity method for the detection of QRS slopes. The spa-

tial velocity signal SV is defined as the rate of change in an

input signal with respect to time. In a given digital signal,

each sample of the spatial velocity signal can be derived

from a set of samples, i.e. a time window of n elements,
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Figure 2. (A): raw single-channel ECG signal (B): the

corresponding output signal after using single stage mov-

ing window median filter with 300msec window length.

from the input signal Y after carrying out certain calcu-

lation procedure. Considering t1, t2, ..., tn as the time in-

stances for the corresponding sample values y1, y2, ..., yn
within a specific time window in the input signal under

study, SV for a specific sample k, SV (k), can be calcu-

lated as follows:

SV (k) =
1

n

∑n

i=1
(ti − t)(yi − y)

1

n

∑n

i=1
(ti − t)2

(1)

where t and y are the mean values of all time in-

stances t1, ..., tn and all the corresponding sample values

y1, ..., yn, respectively. In order to optimize SV output

signal for a given input signal, the moving window tech-

nique using suitable overlapping percentage and scanning

window size is to be considered.

∙ Signal Conditioning: Due to the median filter used in

the preprocessing step and to the spatial-velocity method,

P wave and T wave frequency components represented in

SV signal are significantly reduced. However, in order

to reduce the number of false positive detections, an en-

hancement procedure for high-frequency components of

QRS complex in SV was carried out by means of squar-

ing operation. Accordingly, large QRS components will

be much emphasized and small T wave and P wave low-

frequency components will be highly suppressed in the

same time. An optimized moving window integration fil-

ter was also implemented after the squaring operation to

smooth the output signal. An example of the output signal

at this step is shown in figure 2-C. This final conditioned

spatial-velocity signal denotes as S.

∙ Signal Thresholding: As the value of the signal S ex-
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Figure 3. (A): raw ECG input signal (B): the correspond-

ing output signal after the median filter illustrated in sec-

tion 2.2 (C): the corresponding final conditioned spatial-

velocity signal.

ceeds a certain adaptive threshold Tℎr, the corresponding

time instance is registered. A window, starting from the

detected time instance with specific length, will be then

projected on the raw ECG signal to capture the new QRS

complex candidate. In order to confirm the possible new

heart beat, a set of plausibility checks have to take place

on the candidate QRS complex. A so-called QRS complex

template, defined as representative QRS complex for all

detected dominant QRS complexes, is used to compute the

adaptive threshold Tℎr. The conditioned spatial-velocity

signal STemp for the QRS complex template is calculated

using the same methods presented in the last two steps

(Signal Transformation and Signal Conditioning). The cal-

culation of the adaptive threshold Tℎr is done using the

following equation:

Tℎr = �× STemp, (2)

where � is a constant and � ∈ [0.20, 0.35]. The value of

� was optimized empirically. Figure 3 illustrates an ECG

input segment, its corresponding output after using the me-

dian filter represented in section 2.2 and its corresponding

signal S. As shown in this figure, only QRS components

are emphasized allowing sensitive detection of heart beat

using a suitable adaptive threshold.

2.4. Feature extraction and similarity mea-

sures

In this algorithm, different features were extracted from

each detected heart beat by means of three main similarity

measures. The extracted features were further analyzed in

order to classify the detected beat. The adaptive QRS com-

plex template was considered as reference QRS complex to

compare with. The number of samples in the template beat

and each detected beat have to be identical. BeatTemp and

BeatActual are defined as two row vectors of length n.

They are normalized between +1 and -1 and representing

the QRS complex template and the actual detected QRS

complex respectively. Thus, the three measures are calcu-

lated as follows:

1. Morphology Difference Measure: At any given index

i, a row vector Bi of length m is defined as follows:

Bi = [b(1)b(2)b(3) ⋅ ⋅ ⋅ b(m)], (3)

where b(k), at index k, can be computed as:

b(k) = BeatTemp(i)−BeatActual(i−(
m+ 1

2
)+k) (4)

Finally, the minimal absolute value of the row vector Bi

can be obtained. By repeating the same procedure for

each sample in BeatTemp, a set of values will be pro-

duced. Giving that, MeanSet is defined as the average

of this set of values, the morphology difference Measure

MorpℎDiffMeas will be calculated as:

MorpℎDiffMeas = (1−MeanSet)× 100% (5)

2. Base-To-Peak Measure: MaxAbsTemp and MaxAbsActual

denote the maximal absolute values in BeatTemp and

BeatActual respectively. Based on that, the Base-to-peak

measure B2PMeas will be given as follows:

B2PMeas = (1− abs((MaxAbsTemp

−MaxAbsActual))× 100%
(6)

3. Peak-To-Peak Measure: Giving MaxTemp, MaxActual,

MinTemp and MinActual as the maximal and minimal

values in BeatTemp and BeatActual respectively, the

peak-to-peak measure P2PMeas can be yielded using the

following equation:

P2PMeas = (1− abs(MaxActual −MinActual

−MaxTemp +MinTemp))× 100%
(7)

2.5. Heart beat classification

The classification algorithm implies a complex decision

tree model along with a particular case analysis for the cor-

responding nodes. The classification tree algorithm is able
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to analyze all independent variables presented in the sec-

tion 2.4 as well as additional variables like RR interval and

heart rate for the actual detected heart beat. As result, the

beat cycle will be clustered into one of the four available

given classes, namely normal (NOR), premature ventric-

ular contraction (PVC), supra ventricular premature beat

(SVPB) or non-defined type (NDT). By comparing the set

of independent variables in a given node with their corre-

sponding thresholds, two possible action decisions can be

made. That is, the corresponding node will be then able

to decide whether additional checking procedures run by

other tree nodes are still required or the detected beat can

be directly classified in one of the available main classes.

Necessary checking procedures in different tree nodes are

realized until a final decision about heart beat type can be

taken. After the heart cycle was classified successfully, the

heart beat template along with all required thresholds and

algorithm parameters will be updated.

2.6. Cardiac event detection

This software is able to detect heart rhythm disturbances

in real-time, like bigeminy, couplet, triplet, cardiac pause,

asystoly and ventricular tachycardia. A major drawback

of many existing ventricular tachycardia (VT) monitoring

methods is the high incidence of false alarms. This is

mainly due to the difficulty in discriminating between VT

signal and strong moving artifact signal in real application.

In order to enhance the detection precision, i.e positive pre-

dictivity, of VT in this work, a so-called post-classification

method is being developed and optimized. It is based on

re-analyzing the morphology and heart rhythm features of

the actual beat in relation with corresponding features of

the previous heart beats. Cardiac event detection includ-

ing VT with and without post-classification method were

validated on AHA Arrhythmia Database using the run-by-

run performance statistic tool (RxR) available on Phys-

ioNet.org.

3. Results

Regarding the QRS detector, a sensitivity (Se) of 99.48%

and a positive predictivity (P+) of 99.67% were yielded us-

ing the first channel of all MIT-BIH Arrhythmia Database

records [5], while a Se of 99.50% and a P+ of 99.33%

were obtained employing the first lead of all records pro-

vided by AHA Arrhythmia Database [6]. For PVC de-

tection, the Se and P+ after analyzing the first channel of

both databases are greater than 92% and 76%, respectively.

Without using the post-classification method, the Se and

P+ of Couplet and short run detection on AHA Database

are greater than 85% and 82%, respectively. Se and P+ of

long run detection are equal to 43% and 76%. By using

the post-classification method, the P+ for all kind of run

detections were increased by 12% in average, while the Se

were decreased by round 35% in average.

4. Discussion and conclusions

The results obtained by the post-classification method us-

ing AHA Database and a number of other real-time long-

term ECG recordings show that the precision of cardiac

rhythm detections especially for VT has been noticeably

improved, that is, the number of VT false warnings has

been extremely decreased. As already mentioned, an op-

timization process is still being carried out on the post-

classification method in order to increase the loss in detec-

tion sensitivity. It is mainly based on improving heart beat

classification part by implementing an extra feature for P

wave detection. Accordingly, more arithmetic power and

working memory usage will be highly required. However,

further performance improvement of the monitoring algo-

rithm will be one of the main objectives of this work in

the near future. The overall results achieved in this work

show that a sensitive QRS complex detector and classifier

as well as well-trusted monitoring algorithm for cardiac

events with very low rate of false alarms can be accom-

plished even with limited hardware resources.
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