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Abstract

The dynamics of electrophysiological wave propagation

in ventricular tissue are the result of a large number of

interrelated processes. However there are applications in

which a rough estimation of tissue activation time at a set

of given points is sufficient. This paper presents a mesh-

less method for fast calculation of the activation time at

any arbitrary point of the ventricular domain. It is based

on estimating the path and the elapse time that an electro-

physiological signal would need to travel over two points

on a given 3D geometry. Due to the inhomogeneities of the

medium and its layer based structure, the ventricular wall

is modeled as a multi-layered domain. The travel time of

a wave is estimated by finding the trajectory that it would

follow in a multilayered region. The performance and ac-

curacy of the method is checked against the Eikonal model

in a two layer axisymmetric left ventricule. The compari-

son shows some benefits from the current approach. This

method is useful for the estimation of the electrical acti-

vation sequence in a hexahedral mesh during mechanical

simulation of the heart, since it removes the need for an-

other refined mesh for the electrophysiological part.

1. Introduction

Studying the pathophysiology of the heart using com-

puter models has drawn much attention to researchers over

the last years. Computer electrophysiology models are de-

veloped to improve the understanding and procedures for

cardiac therapies such as cardiac resynchronization ther-

apy (CRT). In particular, computer models are being used

to plan CRT procedures, analyzing the best CRT pacing

strategies [1], and lead placement [2]. There is an increas-

ing number of models that are able to mimic the complex

process of cardiac electrical activation in-silico, to study

pathologies or improve intervention guidance and planning

[3]. These models are applied to investigate electrophysi-

ological cardiac phenomena such as cardiac arrhythmia or

fibrilation, which requires to explicitly model membrane

ionic currents [4]. Nonetheless, the level of the details re-

quired to model the dynamics of action potential propa-

gation in ventricular tissue depends highly on the ultimate

target application [5]. This is the case of simple electrical

wave propagation models that are designed for fast intra-

operative decision making [6]. These models are based on

the assumption that the speed of propagation varies more

slowly and over much larger spatial scales than the trans-

membrane potential [7].

Simulation studies have shown the importance of mod-

eling the fast conduction system, or at least the Purkinje

network (PK), in order to obtain physiological depolariza-

tion sequences [4]. This was one of the most important

drawbacks in previous studies that based their electrical

modeling in fast models such as the Eikonal.

The purpose of this manuscript is to present an approach

for fast modeling of the electrical wave propagation on

ventricular tissue. The proposed model has the advantage

of being mesh-less, therefore does not require fine com-

putational meshes and can share the mesh used for com-

putational mechanics. The effect of PK and the myocar-

dial fiber orientation is also modeled. Here, we present the

model description and the implementation procedure.

2. Methods

The electrical activation starts at a given initial stimula-

tion point and propagates with a velocity that is a function

of tissue type. Therefore, we assume that the onset of the

action potential is distributed in the tissue as a function of

time, distance from the source and tissue conduction ve-

locity coefficients. The aim is to estimate the path that

this electrical wave would follow through several layers of

tissue. The formulation is derived for a three-dimensional

cubic tissue block from the ventricular wall (Figure 1). The

goal is to calculate the activation time for any arbitrary

point in the domain using a layer map that includes the

local conduction velocity. The geometry of the model is

similar to the hexahedral elements that are commonly used
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Figure 1. Wave propagation in a spectrum of transposed

ventricular layers with different conductivities.

for mechanical meshes [2]. With this formulation the acti-

vation time map can be calculated on the coarse mesh gen-

erated for mechanics. In order to combine the fast propa-

gation effects of Purkinje fibers and direction of myofibers,

we use the superposition principle to sum their effects. We

assume an isotropic conductivity and constant conduction

velocity vp for the purkinje fibers [8]. Measurements show

that for the case of a dense PK the electrophysiological

impulse propagation could be considered as homogenous

[9]. We assume myocardial tissue as transversely isotropic

material where the plane of isotropy is along the layers.

Anisotropic conductivity is changed to isotropic conduc-

tivity by modifying the thickness of the layers from dx to

an appropriate thickness of dx′ = k dx where k is defined

as,

k :=
vp + vfi

vp + vft

, (1)

where vft and vfi are the conduction velocity in transmu-

ral and in-plane directions respectively. In the isotropic

domain, we can expect a linear trajectory of the waves as

shown in Figure 1. Since the velocity of the signal is differ-

ent in each layer, the path of the wave will change accord-

ing to the fermat’s least time principle. It could be shown

mathematically that, according to this principle, the time

functional minimization will lead to Snell’s law below;

sin Θi

sin Θi+1

=
vi

vi+1

, (2)

here vi and vi+1 are the wave conduction velocities in the

layers i and i + 1 and Θi and Θi+1 are the angles between

the normal (to the interface) plane and the incident waves

respectively. v in the layers is defined as below:

v := vp + vfi, (3)

Ionic waves follow Eq. (2) at the interface of two media

with different diffusion coefficients [10]. For a multi-layer

domain, we have,

sin Θi−1

vi−1

=
sin Θi

vi

=
sin Θi+1

vi+1

= c, (4)

or,

sin Θi = c vi, i = 1, ..., N (5)

where N is the number of layers and c is a constant that

depends on the path of the trace and diffusivity in the lay-

ers. c is given by the state relation dy = tan Θ k dx where

in the case of very thin layers, dx → 0 and using Eq. (5),

it can be written as,

∫ h

0

c k v√
1 − c2 v2

dx = b. (6)

Eq. (6) is valid for a wave that starts at the origin and prop-

agates to an arbitrary point (h, b). h is the depth of the tar-

get point in the myocardial wall measured from the endo-

cardium, and b is the distance from the stimulation point to

the projection of the target point on the endocardium sur-

face. Having c, the required time to cross layer i is given

by dt = k dx
v cos Θ

, then in a continuum region the required

time t to propagate to the point (h, b) would be,

∫ h

0

k

v
√

1 − c2 v2
dx = t, (7)

In the case of domains that contain both continuous and

discrete conductivity layers, Eqs. (6) and (7) could be writ-

ten as,

n
∑

i=0

c kivi dxi
√

1 − c2 v2
i

+

∫ h

0

c k v√
1 − c2 v2

dx = b, (8)

and

n
∑

i=0

kidxi

vi

√

1 − c2v2
i

+

∫ h

0

k

v
√

1 − c2v2
dx = t, (9)

where n is the number of layers with constant conductiv-

ity coefficient. Having the geometrical parameters (h, b)
and the function v, the activation time could be calculated

from Eqs. (8) and (9). The sequence of calculations for an

arbitrary point p is described in algorithm I.

Algorithm I

1. Estimate the velocity map vp and vf

2. Calculate the values of v and k

3. Find geometric parameters b and h

4. Calculate c from equation (8)

5. Calculate t from equation (9)

In order to model the conduction velocity map, here we

assumed that two factors influence the electrophysiological

propagation in the heart, i) the myofibers arrangement, and

ii) the Purkinje network. Myofiber arrangement influences

the direction of propagation, so they are modeled as inho-

mogeneous conductive parts. Purkinje network branches

are modeled as an isotropic region located at the subendo-

cardial region of the heart [8].
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(a) (b)

Figure 2. (a) Activation time map and the configuration of

the computational domain in this model and (b) Activation

time map from Eikonal model.

3. Results

A simple left ventricular geometry was used to test the

performance of the model. The model is constructed using

prolate-spheroidal coordinates following the method de-

scribed in [11] to build a normal canine ventricular geom-

etry. In order to illustrate the wavefront propagation in the

domain, the action potential is calculated in 65 regularly

distributed control points on the axi-symmetric surface of

the model (see Figure 2). The geometrical parameters b

and h can be easily calculated by integrating over the trace

from the projection of the target point to the stimulation

and target points respectively as below,

h, b =

∫ ta

0

√

x(t)2t + y(t)2t dt. (10)

In order to model the conduction velocity map parameters,

we used a two-domain geometry with a thin, only Purkinje

Influenced Layer (PIL) of thickness 1.5mm and a normal

Ventricular Muscle Layer (VML). Here, the conductivity

is assumed isotropic inside each layer, i.e. k = 1. The val-

ues of conduction velocity in the PIL and VML are set to

1.59 and 0.49m
s

respectively [9]. Having the geometrical

parameters and velocity map, the activation times for the

control points are calculated from algorithm I.

Figure 2 (a) shows the resulting activation time distribu-

tion in the model. We compared the result of our model

with the Eikonal model for the same geometrical configu-

ration. We used the diffusion-free form of Eikonal equa-

tion that could be discretized as below,

∆t = 1

v

√

x(FDFT)−1
x
T. (11)

here x is the position vector, F the fiber direction matrix

and D the anisotropic ratio of space constants respect to

the fiber direction. The homogeneous Eikonal equation

is solved in the domain using the Fast Marching Method

(FMM) [12]. For this mesh-based approach, it is necessary

to find the optimum mesh size that provides independency

of the results from the mesh resolution. We found that for

meshes with more than 30401 nodes the results were con-

sistent. The activation sequence obtained from the Eikonal

solver is shown in Figure 2 (b). Since there is not a stan-

dard for comparing the results from the Eikonal and cur-

rent model, we used the rate of change of the values at the

control points as the characteristic factor. Then for a given

mesh size, a Mean Relative Difference (MRD) factor was

defined as,

MRD =
1

M

M
∑

m=1

|tEikonal
a,m − tMultiLayer

a,m |
t
MultiLayer
a,m

× 100 (12)

where ta,m is the activation time for the control point m,

and M is the total number of the control points. Figure 3

provides the relation of the MRD factor with the number of

nodes in the Eikonal method. This figure shows that by in-

creasing the number of computational nodes, MRD factor

continuously descending. It can be concluded that at very

refined computational domain and very high number of

nodes, the results from Eikonal method tend to the results

from the current approach. Since the rate of change always

decreases, we conclude that the current method provides

results that are more accurate than the mesh based Eikonal

solution. It is expected that due to the closed-form estima-

tion of the signal path in our method, its estimation is more

accurate than mesh-based approaches. It is also expected

that due to the mesh free features, less computational time

is required for the proposed model. We checked the com-

putational time that is needed to calculate the activation

time for 65 control nodes. With the Eikonal method it took

22.5 seconds to perform the computations, whereas for our

method the required time was about 1.4 seconds. The dif-

ference is due to the mesh based feature of the Eikonal

Figure 3. Mean Relative Difference (MRD) as a function

of computational node number in Eikonal model.
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method in which computational time covers the unneces-

sary nodes so that it depends on the number of computa-

tional nodes. On the other hand, the current method is a

point based approach that does not require to calculate in

the entire nodal domain. The calculations are performed

with MathWorks Matlab software.

4. Discussion and conclusions

A mesh-less approach for calculation of activation time

in the ventricular wall has been presented. This formula-

tion has been adapted for a multi-layer configuration of

the ventricular wall, and it has been evaluated in a two

layer domain. It models the effect of purkinje distribution

and transmural change in myofiber conductivity. Compar-

ison with the diffusion-free Eikonal method for the simpli-

fied two layers and homogenous regions shows that there

is a good match between the results of the Eikonal and

current approach. Also calculations with different mesh

sizes show that with the Eikonal method, an increase of

the number of nodes decreases the difference between the

results of both methods. Therefore, for coarse meshes the

method presented could be considered as more appropriate

and accurate than the Eikonal model. The mesh-free fea-

ture makes it suitable for the mechanical simulations with

large hexahedral elements in which a fast calculation of

electrophysiological activation time at an arbitrary point

and without construction of meshes for electrical part is

required. We used a single source stimulus in the model,

but the method could be applied to scenarios with several

sources by simply calculating the time of approach from

each of the points and choosing the minimum action time.

This model can potentially useful in applications for real-

time computation of electrical activation time.

Despite of its rapidity and simplicity, the method suf-

fers the lack of the detailed action potential propagation

information such as the repolarization stages that means

some functional abnormalities such as fibrillation cannot

be studied. This approach is not able to model the diffusion

feature of action potential propagation in the myocardium.

It do not take the myofiber longitudinal and traversal con-

ductivities into account.
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