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Abstract

ROC analysis is a widely used method for evaluating the

performance of classifiers. In analysis involving scarce

data sets leave-one-out resampling techniques might be

appropriate. This introduces a problem in terms of com-

puting average ROC curves necessary to determine vari-

ance in the true positive and negative rates. A method to

determine decision regions for a specified true positive rate

is presented. The method is based on estimating the class

specific probability density functions for the two classes.

The functions are discretised. Dividing these yields a func-

tion where values above or below a specific threshold value

corresponds to deciding class one or two respectively. It is

shown how a gradual lowering of the threshold value cor-

responds to an increase in the true positive rate, and how

a true positive rate can be specified and the corresponding

threshold determined. An example with simulated data is

used to demonstrate the method.

1. Introduction

ROC analysis is widely used to evaluate the perfor-

mance of diagnostic markers[1]. The method is quite

straightforward in use when only a single marker is evalu-

ated[1]. However, when several markers are combined in a

multi-dimensional feature vector, decision regions can be

determined by use of Bayes decision theory[2]. The true

positive and negative rates can be controlled by use of loss

functions to set the size of the decision areas. Another is-

sue to consider is the problem of using resampling, repeat-

edly determining decision regions for specific true positive

and negative rates[1, 3]. With data material being scarce,

the correspondence between the decision regions in the re-

sampling iterations will be poor. A method is proposed

for accurately controlling the true positive rate which can

be used for problems involving small data sets and use of

resampling.

2. Methods

The method estimates the probability density functions

(PDF) for the two data sets

Dk = {xk1
, . . . ,xkMk

}, k = 1, 2, (1)

of feature vectors

x = (x1 x2 . . . xd)
t, (2)

to be discriminated and represents values of these on an

evenly distributed grid of coordinates,

X = {xn, . . . ,xN}, (3)

representing the feature space. A two class simulated data

set and a grid representation of the feature space is shown

in shown in figure 1.

Figure 1: A two class data set (∗/◦ = ω1/ω2) superim-

posed on feature space (X discretisation represented by ·).

As will be shown, the PDFs will be used to control the

size of the decision regions, and thus the number of grid

points in the decision area for ω1 will determine the true

positive rate resolution.

The PDFs for the two classes,

p(x|ωk), k = 1, 2, (4)

are estimated. Maximum likelihoood (ML) estimation is

used under the assumption of Gaussian distribution esti-

mated and represented on the grid and normalised (sums

to 1)[2]. The estimated PDFs for the two datasets are

shown in figure 2 where the computed values of p(x|ω1)
and p(x|ω2) on the grid are shown as blue and red dots re-

spectively. The prior probabilities are estimated as P (ω1)
and P (ω2). According to Bayes decision theory, choosing
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Figure 2: Discretised PDF functions. Values of p(x|ω1)
and p(x|ω2) are represented as · and · respectively.

the class with highest gk = P (ωk)p(xk|ωk), k = 1, 2 min-

imises the error rate[2]. Alternatively, one might express

this: Select class ω1 if

G(x) =
p(x|ω1)

p(x|ω2)
>

λ12 − λ22

λ21 − λ11

P (ω2)

P (ω1)
. (5)

where λij express the loss of wrongly classifying x as

ωi when the trye class is ω2. Otherwise class ω2 is se-

lected.By setting λii = 0, i = 1, 2 and λ12 = 1 (5) is

reduced to

G =
p(x|ω1)

p(x|ω2)
>

1

λ21

P (ω2)

P (ω1)
. (6)

T = 1
λ21

P (ω2)
P (ω1)

can be considered a threshold, and the

true positive and negative rates can be changed by adjust-

ing the value of T which is controlled solely by λ21. G(x)
is represented on the grid as shown in figure 3 where the

computed values of G(x) on the grid is shown as yellow

dots. A threshold value is shown as a linear plane in cyan.

The computed values of G(x) are arranged in descending

order l = 1, 2, . . . , L in a vector T ′. Each element in this

vector, T ′(i) represents a coordinate in feature space corre-

sponding to a coordinate in the discretised feature space X ,

xi. The values in the p(x|ω1) representation is arranged

correspondingly in a vector p1 so that p1(i) is the PDF

value p(xi|ω1) corresponding to the ith largest value of T ′.

The values in the p(x|ω2) representation is also arranged

in this way in the vector p2. The accumulated sum of p1

is computed and named TP . Thus, TP (i), is the true pos-

itive rate corresponding to the threshold value T ′(i). Fig-

ure 4 illustrates this function. For a specific desired true

positive value, TP is searched, and the first occurrence at

or above this value TP (i) is found. As the index values

1, . . . , i corresponds to the i largest values in T and on

the surface of G(x, these coordnates define the decision

region, R1 for ω1. The values of TP lower than 0.1 on

Figure 3: Discretised decision function G(x) (values rep-

resented as ·. A possile threshold is shown as a cyan plane

while contour lines on G(x) and feature space represen-

tation X illustrates possible threshold values and decision

region borders.

Figure 4: A representation of the true positive rate. As

the threshold value is lowered to T ′(i), the correspond-

ing value TP (i) gives the true positive rate. On the

displayed function surface, TP (i) corresponds to the

largest value shown in blue. The blue dots correspond to

TP (1), . . . , TP (i). The corresponding coordinates in X
belong to the decision region for ω1, R1 (·). The remain-

ing part belongs to R2 (·).
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the TP function in figure 4 and the coordinates in feature

space in R1 are both indicated in blue, while the values and

coordinates in the adjacent area, R2 is shown in red.

The threshold value for these decision regions are found

as T (i) and shown as a linear plane in cyan color in figure

3.

Once these functions are computed, a desired level of

true positives can be found from a search in the TP vector,

and then the corresponding threshold value, T (i) is found.

From this threshold value, λ21 can be computed if that is

desirable. The true negative (TN) value can be computed

by summing the values of p(xn|ω2) in R2 which corre-

sponds to TN =
∑L

l=i+1 p2(i).
As the number of grid points can be freely chosen,

the problem of maintaining the same true positive value

throughout resampling can be handled.

In cases where the data material is scarce, resampling

by leave-one-out can be used. If we consider the complete

data set as the union of D1 and D2 as

D = {D1, D2} = {x11
, . . . ,x1M1

,x21
, . . . ,x2M2

}, (7)

we train M = M1 + M2 classifiers from the datasets

Dj = {x1, . . . ,xj−1,xj+1,xM}, i = 1, . . . ,M, (8)

each time leaving out xj for testing. For Dj a classifier is

trained and the thresholds for the desired true positive rates

TPd(m), m = 1, . . . , Q is determined as described above.

For each threshold value, TPd(j), the classification of xj

is determined as Ck(m, j) = k, k = {1, 0} where 1 de-

notes a correct classification and 0 a false classification.

Thus, the matrix Ck,k = 1,2 represent all the classifica-

tions for all left out samples at all threshold values for the

two data sets Dk, k = 1, 2.

Ck =

















Ck(1, 1) · · · Ck(1, j) · · · Ck(1, Mk)
...

...
...

Ck(m, 1) · · · Ck(m, j) · · · Ck(j,Mk)
...

...
...

Ck(Q, 1) · · · Ck(Q, j) · · · Ck(Q, Mk)

















(9)

where row number m gives all the classifications for the

treshold trained to TP (m) and column number j gives all

classifications for a specific xj . The mean true positive

value TP (m) for the tested feature vectors can be com-

puted as

TPt(m) =

∑M1

j=1 C1(m, j)

M1
. (10)

The corresponding mean true negative value TN(m) can

be computed as

TNt(m) =

∑M2

j=1 C2(m, j)

M2
. (11)

Confidence limits can be computed according to the

method proposed for binomial data[4, 5].

3. Examples

Data were simulated for two two-class classification

problems. Gaussian distributions were assumed with mean

values µ1 = (1 1)t, µ2 = (−1 − 1)t and covariance being

equal to the the identity matrix for problem number 1. The

parameters for the distributions were the same for problem

2 except for µ1 = (2 2)t, µ2 = (−2 − 2)t. The prior

probabilites for both problems were set to P (ω1) = 0.4
and P (ω1) = 0.6. 500 feature vectors were generated for

each problem and the classifiers were designed for the full

data set and reduced data sets at 250, 100, 50 and 25 sam-

ples.

The results for problem 1 is shown in figure 5. The first

Figure 5: ROC curves for problem 1. The first column

shows the ROC curves for the model based TP and TN

values. The second column shows the ROC curves for the

data used in training. The third column shows the ROC

curves for the resampled data. The number of samples de-

crease from the top: 500, 250, 100, 50, 25 samples.
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column shows the ROC curves for the model based TP and

TN values. The second column shows the ROC curves

for the data used in training. The third column shows the

ROC curves for the resampled data. The green curves show

the confidence limits in the third column and the standard

deviations from the mean values in the two other columns.

From top to bottom, the number of samples decrease.

The corresponding ROC curves for problem 2 is shown

in figure 6.

Figure 6: ROC curves for problem 2. The first column

shows the ROC curves for the model based TP and TN

values. The second column shows the ROC curves for the

data used in training. The third column shows the ROC

curves for the resampled data. The number of samples de-

crease from the top: 500, 250, 100, 50, 25 samples.

4. Discussion and conclusions

As can be seen from the ROC curves of the test data, the

uncertainty increases as the number of samples decreases.

It is also interesting to note the discrepancy between the

ROC curve for the test data compared to the ROC curves

for the model and the training data. This might indicate

that the the number of samples is too low. In addition this
happens for problem 1 where the two classes are less sep-

arated.

One might speculate that good correspondence between

the model, training data and resampled test data ROC

curves indicates good generality in the classifier. These

relationships might be investigated further in further de-

velopment of this work. Further investigations should be

made to compare the present method to established meth-

ods in ROC analysis.

A possible limitation of the method that should be in-

vestigated is the effect of limiting the feature space.

A method for controlling the true positive rates for

multidimensional feature vectors has been described and

demonstrated on artificial data.
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