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Abstract

Based on the experimental model, in this study, the heart

rate variability (HRV) is investigated at a microscopically

level in a cardiac cells culture by analyzing the field po-

tential (FP) signals using a wavelet transform. Our results

suggest that wavelet analysis provides useful information

for the assessment of dynamic changes and patterns of FP

train.

1. Introduction

Heart rate variability (HRV) is a reliable reflection of the

many physiological factors modulating the normal rhythm

of the heart [1]. It shows that the structure generating the

signal is not only simply linear, but also involves nonlin-

ear contributions. HRV corresponds to the variation over

time of the period between consecutive heartbeats and is

predominantly dependent on the extrinsic regulation of the

heart rate (HR). In our precedent studies, an experimen-

tal model of FP propagation in physiological and arryth-

mia conditions has been established [2–8]. Based on this

model, in this study, the HRV is investigated at a micro-

scopically level in a cardiac cells culture by analyzing the

field potential (FP) signals using a time-frequency method.

A number of alternative time-frequency methods are now

available for signal analysis. Among them, the wavelet

transform has emerged over recent years as the most fa-

vored tool by researchers for analyzing problematic sig-

nals across a wide variety of areas in science, engineering

and medicine [9]. It is especially valuable because of its

ability to elucidate simultaneously local spectral and tem-

poral information from a signal by employing a window of

variable width [10]. The aim of this work is to characterize

the electrical activity of cardiac cells by applying wavelet

transform on experimental signals. In first, synchronous

multifocal FP recorded using a non-invasive technology

based on 60 substrate-integrated microelectrode arrays are

denoised using a wavelet based method. Then choosing

a pattern representing the FP signal in a normal rhythm

of cardiac cell, an adapted wavelet function called mother

wavelet has been synthesized. Using a wavelet transform

and this mother wavelet, a time-frequency decomposition

of the FP train has been realized in the case of the normal

and abnormal rhythms leading to extract FPs from the sig-

nal and to obtain easily characterizing parameters, such as

FP duration and positions. Our results suggest that wavelet

analysis provides useful information for the assessment of

dynamic changes and patterns of FP train. Finally, using

this method, we show that during a normal rhythm (con-

stant frequency between FP signal), fluctuations appear in

the FP duration. These local spontaneous variations in the

FP duration may be a safety process protecting against mi-

croscopically discontinuous conduction, and abnormality

of this natural process could contribute to the genesis of

some heart arrhythmias.

2. Materials and methods

2.1. Field potential data generation and ac-

quisition

Neonatal ventricular myocytes were prepared from 1 to

4 days-old Wistar rats by trypsin-based enzymatic disper-

sion as described previously [11]. The cell suspension

was preplated twice in the culture medium composed of

Ham’s F10 medium supplemented with fetal calf serum

(FCS) and penicillin/streptomycin (100 U/ml) in order to

increase cardiomyocyte proportion. Cardiomyocyte-rich

cultures (> 90%) were seeded at a final density of 105

cells per cm2 in the cultured medium. Cultures were in-

cubated in a humidified incubator (95% air, 5% CO2 at

37◦ C) and were used after 4-5 days of growth, a step at

which confluent and spontaneously beating cell monolay-

ers were obtained. CM were grown on multielectrode ar-

rays (MEA) allowing non-invasive synchronous multifo-

cal field potential (FP) recordings. The MEA consists of

60 substrate-integrated microelectrode arrays (8 × 8 ma-

trix, 30 µm electrode diameter, 200 µm inter-electrode

distance). Data were acquired and analyzed with a cus-

tomized platform programmed with Matlab (Mathworks)

in order to provide two-dimensional electrophysiological

maps derived from these multisite FP recordings.
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2.2. Continuous wavelet transform (CWT)

background

The continuous wavelet transform (CWT) is a time-

frequency analysis method which allows arbitrarily high

localization in time of high frequency signal features. The

CWT does this by having a variable window width, which

is related to the scale of observation. A large selection

of localized waveforms can be employed as long as they

satisfy predefined mathematical criteria (described below).

The wavelet transform of a continuous time signal, x(t), is

defined as:

T (s,τ) =
1√
s

+∞∫

−∞

x(t)Ψ∗
s,τ(t)dt, (1)

where Ψ
∗
s,τ(t) is the complex conjugate of the analyzing

wavelet function related to the mother wavelet Ψ(t) as

Ψ
∗
s,τ(t) =

1√
s

Ψ

(
t − τ

s

)
dt (2)

The scale s ∈ R
+,∗ corresponds to the width of the wavelet

function Ψs,τ(t) and τ ∈ R is the shift of wavelet along the

time axis. In order to be classified as a wavelet, a function

must satisfy certain mathematical criteria. These are:

1. It must have finite energy:

E =

+∞∫

−∞

|Ψ(t)|2 dt < ∞ (3)

2. If Ψ̂( f ) is the Fourier transform of Ψ(t), i.e.

Ψ̂( f ) =

+∞∫

−∞

Ψ(t)e−i2π f tdt (4)

then the following condition must hold:

Cg =
∫ +∞

0

∣∣∣Ψ̂( f )
∣∣∣
2

f
d f < ∞ (5)

This implies that the wavelet has no zero-frequency f com-

ponent, i.e. Ψ̂(0) = 0, or to put it another way, it must

have a zero mean. Equation 5 is known as the admissi-

bility condition and Cg is called the admissibility constant.

The value of Cg depends on the chosen wavelet.

3. For complex (or analytic) wavelets, the Fourier trans-

form must both be real and vanish for negative frequencies.

For its practical implementation the CWT is computed

over a finely discretized time frequency grid. This dis-

cretization involves an approximation of the transform in-

tegral (i.e. a summation) computed on a discrete grid of

scales s and position τ on the time axis. In general, the

wavelet transform is approximated in this way over each

time step for a range of wavelet scales. After given the

conditions of admissibility and existence of the wavelet,

we use a wavelet transform for denoising experimental FP

signal, then an adapted wavelet mimicking the FP signal is

synthesized to recognize a FP pattern in an experimental

signal.

3. Results

3.1. Denoising field potential signal

A multilevel 1-D stationary wavelet decomposition us-

ing the Haar wavelet is applied to the experimental signal.

This decomposition process produces two sets of coeffi-

cients: approximation coefficients and detail coefficients

(see Fig. 1). These vectors are obtained by convolving the
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Figure 1. Approximations (a) and details (b) coefficients

resulting from the wavelet decomposition of a signal of FP

train.

signal with the low-pass filter for approximation, and with

the high-pass filter for detail. Then, after removing the de-

tail coefficients corresponding to the levels {1,2,3} and

keeping the coefficients of approximation of all levels, a

signal is reconstructed using the inverse discrete transform.

The signal obtained in this manner is the denoised signal

(see Fig. 2). Our experimental setup allows us to have 60
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Figure 2. Original (black color) and denoised (red color)

signal of field potentials.
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signals simultaneously. These signals are distributed spa-

tially and correspond to the configuration of the microelec-

trode array. Taking some signals as examples, the result of

denoising is illustrated in the Fig. 3.
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Figure 3. Examples of denoised signals corresponding to

electrodes {3,4,5,6} after applying the wavelet decompo-

sition. (a) (respectively (b)) shows a regular rhythm (re-

spectively an arrhythmic signal).

3.2. Construction of adapted wavelet pat-

tern of Field Potential

The wavelet coefficients in the CWT represent the de-

gree of correlation between a wavelet mother function and

the FP signal. Therefore, the choice of the wavelet basis

is crucial for the accurate representation of the FP signal

in the wavelet space. Using pattern defined from the FP

experimental signal, an admissible wavelet for CWT is de-

signed [12]. The principle for designing a new wavelet

for CWT is to approximate a given pattern using least

squares optimization under constraints leading to an ad-

missible wavelet well suited for the pattern detection us-

ing the continuous wavelet transform [12]. This adapted

wavelet named ”field potential (FP) wavelet” has a norm

equal to 1, so it respects the conditions ((3) and (4)).

The pattern is approximated in the interval [0,1] by least

squares fitting using a projection on the space of functions

orthogonal to constants. Depending on the experimental

signal, the FP can be have different patterns, so some pat-

terns of FP are illustrated in the Fig. 4.

4. Results

4.1. Field potential patterns recognition

Depending on experimental conditions and characteris-

tic of cardiac cells, the FP signal to noise ratio (SNR) is

very low. Then for investigating the activation map of FP

generation and the map of the FP propagation, it is neces-

sary to detect the presence of the FP in a signal. It is also
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Figure 4. Different patterns constituting the experimental

signal of field potentials train and adapted wavelets built

from these patterns.

useful to classify the experimental signal between FP sig-

nal and artefactual signal. A good spatial localization and

a good frequency localization of the FP can be performed

using the CWT and the FP wavelet. So, using the CWT

and the FP wavelet designed in the Fig. 4(a), the wavelet

coefficients have been computed. These coefficients rep-

resent the degree of correlation between a wavelet mother

function (FP wavelet) and the FP signal. The Fig. 5 il-

lustrates the correlation image between the FP wavelet and

the FP signal. The maximum of correlation is obtained for

a specific scale s and a position τ . These correlation results

give us also the number N of FP included in an experimen-

tal signal of FP train. The number N is the same for all

electrodes in the case of the normal rhythm, it is variable

and different on each electrode in the arrhythmic case.
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Figure 5. Contour plots of the wavelet coefficients corre-

sponding to electrodes {3,4,5,6} given by the CWT using

the FP wavelet.

4.2. Relationship between FP duration and

FP frequency

Depending on N, for each FP, a local maximum is found

in the wavelet coefficients corresponding to this FP. This

local maximum illustrates the relationship between the

scale s and the temporal position τ of the FP (see Fig. 6).

Our hypothesis is that the scale s can be considered like as
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Figure 6. Local maxima of FP pattern corresponding to

electrodes {3,4,5,6} in the normal rhythm (case (a)) and

arrythmia signal (case (b)).

the FP duration and the temporal position τ can be used to

determine the interspike interval (ISI) between successive

spikes which represents the period of the FP pattern. The

Fig. 6(a) illustrates that for a normal rhythm, small fluc-

tuations appear in the FP duration but the ISI is constant.

These local spontaneous variations in the FP duration may

be a safety process protecting against microscopically dis-

continuous conduction (see Fig. 7(a)), and abnormality of

this natural process could contribute to the genesis of some

heart arrhythmias (see Figs. 6(b) and 7(b)). Considering

also the approximation that the FP pattern represents the

action potential derivative. We can approximate the action

potential duration (APD) by the FP duration and the ac-

tion potential (AP) frequency by the FP frequency. Seeing

Fig. 7(a), there is a ”stability relation” between the ac-

tion potential duration (APD) and the frequency of action

potential (AP). In the arrhythmic case, this stability can’t

be observed (see Fig. 7(b)), that means the variation of

the APD and the frequency of AP simultaneously between

successive spikes could be a factor initiating arrhythmia in

the heart.
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Figure 7. Relationship between the FP duration (scale)

and the FP period corresponding to electrodes {3,4,5,6}.

Normal rhythm (case (a)) and arrythmia signal (case (b)).

5. Discussion and conclusions

In this work, HRV has been investigated in neonatal rat

cultured CM. This study is based on the use of the wavelet

transform (WT). According to the results presented here,

the WT is an useful tool which can increase the SNR of the

experimental data. It could be used to discriminate differ-

ent signals. The WT property allows an analysis of HRV

with accuracy. These investigations at cellular level may

be helpful in the comprehension of the HRV.
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CNRS 5158), Université de Bourgogne, 9 avenue Alain Savary,

BP 47870, 21078 Dijon, France,

sjacquir@u-bourgogne.fr

404


