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Abstract 

This paper evaluates an exact formula for the number 

of the systolic blood pressure and pulse interval ramps, 

as well as spontaneous baroreflex sequences within the 

surrogate and artificial time series. It discusses the 

temporal sBR parameters of original and artificially 

generated data.  

1. Introduction 

The baroreceptor reflex (BRR) is a major negative 

feedback regulator of arterial blood pressure (BP). Its role 

is to keep BP in a homeostatic range by modulating heart 

rate (HR) and peripheral resistance through efferent vagal 

and sympathetic activity directed to the heart and the 

blood vessels. Cardiovascular diseases are associated 

with alterations in BRR activity, while reduced BRR 

sensitivity (BRS) has been found to be an indicator of the 

severity of cardiovascular morbidity. and also an 

independent marker of the risk of mortality and major 

adverse cardiovascular events in hypertensive patients [1-

3].  

Recent development in techniques for the BRR 

activity analysis allows studying the cardiac BRR without 

the use of vasoactive drugs - the spontaneous BRR 

(sBRR) [4-6]. One of the most widely used techniques is 

sequence method, based on the identification of 

sequences of consecutive beats in which progressive 

increases (or decreases) in SBP are followed by 

progressive increases (or decreases) in pulse interval (PI). 

Delay of increasing or decreasing PI consecutive beats 

(PI ramps) in respect to SBP ramps depends on species 

and for rats it is found to be 3-5 beats [4,7].  

Occurrences of ramps and sequences in observed time 

series might be a mere coincidence. To test the 

hypothesis that interactions of systolic blood pressure and 

pulse interval are real sBR events and not the accidental 

occurrences, a simulated data series should be tested as 

well. To preserve unique properties of each biological 

time series, surrogate data approach is usually applied 

[8,9]. Surrogate time series mimic statistical properties of 

the data under study, but not the property that is tested 

for. Spontaneous baroreflex sequences exhibit strong 

temporal dependence, so scrambled (isodistributional) 

surrogates - samples of the time series are randomly 

scrambled to destroy statistical dependence - are applied 

for testing [10]. However, if the time series are short, the 

amount of the sBR sequence realizations in scrambled 

sets is limited and it is often difficult to estimate the 

reliability of the test results.  

This paper deals with statistical properties of time 

series regarding ramps and sequences, evaluating an 

exact formula for the number of SBP/PI ramps and sBR 

sequences within the surrogate sets.  

2. Methods 

2.1. Experimental protocol 

The experimental procedures in this study confirmed 

to European Communities Council directive of 24 

November 1986 (86/609/ECC) and the School of 

Medicine, University of Belgrade Guidelines on Animal 

Experimentation. Thirteen outbred male Wistar rats 

weighing 330 ± 20 g were used. Ten days before the 

measurements rats were submitted to surgery in which 

radiotelemetric probes (TA11PA-C40, DSI, Transoma 

Medical) were implanted in abdominal aorta under 

combined ketamine and xylazine anesthesia, along with 

gentamicin and followed by metamizol injections for pain 

relief. The measurements at baseline conditions lasted 20 

minutes. Arterial blood pressure (BP) signal was digitized 

at 1000Hz and relayed to a PC equipped with Dataquest 

A.R.T. 4.0. software. PI series were derived from the 

arterial BP as an inverse of interval between maxima in 

the pulse wave signal. The original BP waveforms were 

carefully visually compared to the extracted SBP maxima 

and artifacts were removed.  

2.2. Surrogate data and artificial series 

The mean record length was N = 6883 ± 180 beats 

(SBP/PI pairs). For each one of 13 rats, 15 pairs of 

artificial streams with the same length, mean and 

variance as in original record were generated as follows: 

1. Isodistributional (scrambled) surrogate data 2. Uniform 
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distribution 3. Normal ditribuion 4. Binary data with 

Bernoulli distribution. The last one was introduced for 

the sake of investigation of a process without memory.  

2.3. Estimated parameters 

The main goal of the paper was to investigate 

statistical properties of sBR ramps and sequences within 

the simulated data sets. Minimal length of sequences M 

ranged from 2 to 5, expressed in number of inter-beat 

intervals (the corresponding minimal length in number of 

beats equals to M+1). The temporal parameters estimated 

from the recorded and artificial data sets are: 

TR (TSEQ): Mean generated ramp (sequence) length 

[expressed in inter-beat intervals]; 

TIR (TISEQ): Mean inter-ramp (inter-sequence) length; 

TCR (TCSEQ): Mean sBR cycle lenth, where cycle is 

defined as a ramp (sequence) preceded by inter-ramp 

(inter-sequence) interval; 

NR (NSEQ): Number of ramps (sequences) in record, 

obtained as an averaged ratio of record length and cycle 

length; to allow the comparison of unequal record 

lengths, a normalized mean number (per 100 heartbeats 

or per 1 minute) is usually employed.  

Ramps are identified as streams of successive positive 

(or negative) differences of adjacent signal samples or 

recorded and simulated data series, except for Bernoulli 

process, where they are identified as streams of equal 

symbols. Sequences are identified if streams of 

successive positive (negative) signal differences are 

found both in SBP and in PI series delayed by three beats. 

2.4. Model 

In both recorded and generated time series both 

positive and negative signal increments ∆  (differences 

between signal samples, 
1,...,1,1 −=−=∆ + Nixx iii ) 

occur with the same probability. However, the original 

signal amplitude is bounded and the probability that 

increment would remain positive (or negative) depends 

on number of immediately preceding  increments of the 

same sign. A state transition diagram that corresponds to 

ramp and sequence generation is presented in Figure 1. 

State “n” corresponds to the nth increment of the same 

sign as n-1 preceding ones. The dwelling time of each 

state equals to 1 [interbeat interval]. Although the 

diagram allows generation of infinite streams of positive 

(negative) increments, transition probabilities rapidly 

decrease and the probability that there would be more 

than Mmax states approaches to zero.  

The model enables evaluation of previously defined 

parameters TR, TIR, TCR, NR. The states are partitioned 

into two parts: inter-ramp states (states 1, 2, …, M-1) and 

ramp states (M, M+1, …, Mmax), given that the minimal 

ramp length is set to M. The ramp and inter-ramp length 

correspond to mean time the process spends in the 

corresponding set of states. This problem could be solved 

using numerous methods (Mason’s formula, fundamental 

matrix of Markov chain, z-transform of Markov chain, 

etc. [11,12]). This particular chain, however, offers very 

simple evaluation of state selection probabilities: 
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This enables much easier evaluation of the stated 
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A cycle length is then expressed as TC = TR+ TIR.   

Transition probabilities pn, as already stated, are 

decreasing with each transition. If fx(x) is probability 

distribution function of simulated processes, than pdf of 

its increment is 

dxxfxff xx ⋅∆−⋅=∆ ∫∆ )()()(
.                                     (5) 

Probability that nth increment in a row is of the same 

sign as the previous ones is obtained iteratively, 

averaging the corresponding conditional probability 

density functions.  

 

Figure 1. State transition diagram of ramp (sequence) 

generation 
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3. Results 

Figure 2 presents pdf of time series sample increments, 

for recorded (averaged over the 13 animal records) and 

simulated data. For the sake of pdf comparison, all the 

recorded time series were centralized and normalized. 

The subsequent figures present estimated values for ramp 

length (Fig. 3), inter-ramp length (Fig. 4) and normalized 

number of ramps per 100 beats (Fig.5). Maximal ramp 

(sequence) length estimated for artificial series was found 

to be Mmax = 8 and Mmax = 4, for ramps and sequences 

respectfully. There was no occurrence of sequence longer 

than 4 in surrogate and generated data sets, although in 

original time series longer sequences do exist. For this 

reason, Fig. 6 gives number of sequences for M=2 and 3 

only.  

4. Discussion and conclusions 

Increments of samples with uniform distribution 

follow triangular distribution, while increments of normal 

samples retain normal distribution with increased 

variance (Eq. 5), verified in simulated series (Fig. 2). 

Numerically, both distributions are in perfect accordance 

with increment distribution of surrogate data series. The 

time parameters estimated from all these three artificially 

generated series were exactly the same (middle bars at 

subsequent figures). Moreover, these values perfectly 

mach the values derived using formulae (3) and (4), with 

state transition probabilities evaluated numerically for 

uniform sample distribution and verified using simulated 

data.  

The generation of increments of the same sign is a 

process with memory. It is surprising to notice that 

temporal statistics of SBP recorded time series show no 

significant difference from parameters estimated from 

stream of independent memoryless Bernoulli trials (the 

first and the fifth bar in Figs 3a, 4a and 5a). On the other 

hand, parameters of PI time series did not differ from the 

ones estimated from surrogate data and artificially 

generated sample streams (excluding Bernoulli process). 

These results verify different control mechanism that are 

inherent to SBP and PI time series Number of sequences 

of length M=2 inter-beat intervals (three successive SBP-

Figure 2: Increment pdf  a) SBP; b) PI 

Figure 3: Ramp length a) SBP; b) PI 

Figure 4: Inter-ramp length a) SBP; b) PI 
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PI pairs!) estimated from SBP-PI series do not change 

significantly neither in surrogate nor in other artificial 

data series (Fig. 6). Therefore, it is doubtful whether they 

are really consequence of sBR, or just a coincidence. 

Following this result, it might be suggested that the 

minimal sequence length in sBP studies should be set to 

three inter-beat intervals (4 SBP-PI pairs). 

Sequences longer than 4 inter-beat intervals do not 

occur in surrogate and artificial data. Therefore, their 

existence in original SBP-PI series must be a 

consequence of true sBR. Unfortunately, in records of 

moderate length their number is too few to allow reliable 

estimation of sBR parameters and for this reason the 

minimal sequence length could not be set to such values. 

Suggestion might be that such long sequences should be 

observed separately.  

Derived expressions (3) and (4) with numerically 

evaluated (or estimated) transition probabilities might be 

used instead of counting the number of ramps/sequences 

in surrogate data, especially when the experiments are of 

short duration and the counted number of sequences is 

too small to allow reliable estimation. 

Figure 5: Number of ramps per 100 beats a) SBP; b) PI 

Figure 6: Number of sequences per 100 beats 
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