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Abstract 

 Purkinje fiber network (PFN), one of the most 

important components of the ventricular conduction 

system, is crucial in modeling ventricular tachycardia 

and fibrillation. Construction of anatomical detail 

Purkinje fiber network, however, is a very challenging 

task. In this paper, we present a novel method for 

restoring the 3D PFN in the left ventricle (LV) by 

manifold learning. Motivated by the fact that canine 

Purkinje fiber is generally on the endocardial surface of 

the heart, we have collected a set of real 2D canine LV 

images, from which the PFN image is detected and 

segmented. We then use manifold learning to map 3D 

canine left ventricular model to 2D PFN and the inverse 

mapping to finish the final construction. Our 

experimental results show that the 3D PFN construction 

method is flexible and feasible.  

 

1. Introduction 

Purkinje fiber network in the canine left ventricle, 

which includes the left bundle branch and the purkinje 

fiber, lies in the endocardial layer, and can be hardly seen 

whether from outer space or from the inner space of the 

ventricle. Traditional medical imaging methods, such as 

magnetic resonance imaging (MRI) or computed 

tomography (CT), can be used to obtain the 3D structure 

information of the LV, but fail to reveal the PFN 

information.  

Because of the great significance of the PFN in 

modeling ventricular tachycardia and fibrillation, so far, 

there have been several PFN reconstruction methods.  

Siregar et al. developed a simplified model which was 

composed of few branches connecting the sites directly to 

the branches and bundle (Figure. 1A) [1]. Simelius et al. 

incorporated a detailed anatomically based PFN system in 

human ventricles model, where the organization of the 

conduction system was from textbooks on human 

anatomy and PFN is supposed to be in almost the same 

width (Figure. 1B) [2]. Recently, Vigmond and Clements 

developed an anatomically based Purkinje system for the 

San Diego rabbit ventricles model by flattening the 

endocardial surfaces onto a plane using a 

multidimensional scaling method, and PFN was also 

drawn manually (Figure. 1C) [3]. 

 In this paper, we propose a novel method to construct 

PFN by means of real canine PFN data. To ensure that the 

local structure of PFN is preserved, we use the locally 

linear embedding (LLE) algorithm resulting in that the 

original 3D data on the endocardial surface is mapped to 

a 2D plane. We rescale, rotate and translate the 

measurement of the plane surface to make it consistent to 

the PFN image.  

The discrete PFN image is embedded on the 3D 

curved surface using the main bundle branches and 

boundaries as markers. When we successfully obtain a 

PFN-embedded plane surface image, we will use the 

inverse LLE mapping to represent the 3D PFN which is 

within the 3D LV muscle. Finally, anatomical detail 3D 

Purkinje fiber network is obtained with a satisfactory 

visible quality. 

 

 
a) Siregar et al.    b) Simelius et al.  c) Vigmond et al. 

 (1998)                     (2001)                    (2007) 

Figure 1. Images of PFN construction from different institutions 

 

2. LLE 

Manifold learning, which attempts to recover a lower 

dimensional manifold from data points in a high 

dimensional space, have generated techniques such as 

Isomap [4], locally linear embedding (LLE) [5,6], and 

Hessian LLE [7]. Among them, LLE keeps locally linear 

relationship very well between points in high dimensional 

space, and recovers global nonlinear structure from 

locally linear fits, that is the reason we choose it in our 

method. 
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Suppose the data set consists of a set of D-

dimensional vectors {X1, … , XM} sampled from some 

underlying manifold. M is the number of elements in the 

set. Provided there are sufficient data, we expect each 

data point and its neighbors to lie on or close to a locally 

linear patch of the manifold. We characterize the local 

geometry of these patches by linear coefficients which are 

used to reconstruct a data point from its neighbors. 

Reconstruction errors are measured by the cost 

function 
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The weights Wij summarize the contribution of the jth 

data point to the ith reconstruction. To compute the 

weights Wij, we minimize the cost function with the 

following two constraints: 

First, each data point Xi is reconstructed only from its 

neighbors by enforcing Wij=0 if Xj does not belong to the 

set of neighbors of X.  Second, sum of each row of the 

weight matrix is one, 1ijj
W =∑ . The optimal weights Wij 

subjected to these constraints are obtained by solving a 

least-squares problem. 

 LLE constructs a neighborhood-preserving mapping. 

In the final step of the algorithm, each high-dimensional 

observation Xi is mapped to a low-dimensional vector Yi 

by preserving global internal manifold structure and  

choosing D-dimensional coordinates Yi to minimize the 

embedding cost function 
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This cost function, like the previous one, is based on 

locally linear reconstruction errors, but here we fix the 

weights Wij while optimizing the coordinates Yi. The 

embedding cost in Eq. (2) defines a quadratic form in the 

vectors Yi. With the constraints that make the problem 

well-posed, it can be minimized by solving a sparse M×M 

eigenvalue problem, where the eigenvectors with the D 

smallest nonzero eigenvalues provide an ordered set of 

orthogonal coordinates centered on the origin. 

3. PFN Construction 

The geometry of the left endocardial surfaces was 

based on the Canine heart model of Cornell University 

(http://thevirtualheart.org/). Our PFN construction 

method includes the following main steps: 

1) PFN extraction: The points of PFN are extracted from 

the collected canine LV image. The  extracted points are 

collected to construct a points set C. 

2) Mapping from 3D surface, which is composed of the 

points-set P, to 2D LV plane, which is composed of the 

points-set F: This step includes locally linear embedding 

and tracking of the boundary points. 

3) Match with P and C, and obtaining new 2D plane 

image Z after embedding C to P. 

4) Inverse Mapping: This step map Z to 3D space.  

The result of Step 2 provided us with a one-to-one 

mapping of the 3D points to the points in a plane; the 

inverse of this mapping was used in Step 4. In the 

following, we discuss each of these steps in detail. 

In the following, we discuss each of these steps in 

detail. 

 

3.1. PFN extraction from the canine LV 

image 
In the PFN images, the PFN lying in the endocardial 

layer of a canine LV, as is shown in Figure. 2a. The 

anatomical detail linear shape of PFN is extracted by 

means of the semi-automated method, as the following 

two steps: 

1) Extracting the profile of PFN by the threshold value of 

the gray scale, and region-dependant segmentation. 

2) Extracting each segment using different threshold 

values, till the branches are extracted. Close to the 

termination of each branch, the gray scale of the branch 

point is similar to the one of background. Thus it is 

necessary to modify the gray information of points in 

termination branches. 

3) Combining all the segmentations to the whole image, 

points of which are marked as the points-set  C. 

The image of the points-set  C is shown in Figure. 2b. 

 

 
a) PFN in a cut canine LV            b) extracted PFN 

Figure 2. 2D information of PFN 

 

3.2. Mapping from 3D surface to 2D LV 

plane 
  

3.2.1. Mapping from 3D points-set F to 2D 

points-set P.  
1) Compute the k neighbors of each data point Xi in F. 

2) Compute the weights Wij that best reconstruct each 

data point Xi  from its neighbors. 

3) Compute the vectors Yi , which make up of P, using the 

LLE algorithm. 

 The number of neighbours, k, is crucial in the 

algorithm, which determine the distribution of the points-

set F in 2D space. We experimentally determine the 

optimal k value from a predefined numerical range. 
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3.2.2. Obtaining boundary points-set Pb of P, 

Fb of F. 
It is easy to obtain the boundary of the 2D points-set 

P, 

{ },  is a boundary point of the image composed of i i iPb p p P p P= ∈ . 

Since the points of F have one-to-one correspondence to 

the points of P in Section 3.2.1, Fb can be obtained from 

the mapping obtained: 

1) The polar coordinate is created. In order to find the 

boundary faster, geometric centre of P is taken as the 

origin of the polar coordinate: 

1 1
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= =∑ ∑ ,                                (3) 

where M is the number of the point in P . 

2) The other points in the set P, transform their 

rectangular coordinates into the polar coordinates. The 

angle αi and radius ri of point [xi, yi]
T is described as: 

( ) ( )( )arctani i o i oy y x xα = − −                                     (4) 

( ) ( )
2 2

i i o i or y y x x= − + −                              (5) 

3) We divide the points of the set P into n subsets 

according to their angle values. In the ith subset is 

defined as 
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If the number of points is mi, then the boundary points 

Pbi are probably among ones with the largest radius in the 

subset: 
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1
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4) Points distribution of set P is not evenly distributed, 

which consequently makes some subsets have few points, 

that means, not all Pbi in the subsets from the above are 

the real boundary points. Therefore, we introduce a 

variable t for the refinement of Pbi: 

When 
im t< , merge Ai with Ai+1  till im t≥  

1i i iA A A
+

= ∪                                                  (8) 

1i i im m m
+
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5) When the points-set P is obtained from F by LLE 

algorithm, that is :L F P→ , furthermore, F P↔ , and 

( ) , 1,...,i iL F P i M= = , so the boundary points-set Fb can 

be obtained from Pb. 

 

3.3. Matching P and C, and obtaining new 

2D image H after embedding C to P. 
 

3.3.1. Setting position of the 2D points-set C. 
For mathematical manipulation conveniency, point of 

C, [x, y]T, is expressed as [x, y, 1]T. After the scale 

transform K, rotation transformation R, translation 

transformation T, C turns to be C*: 
* ( )C T R K C= c c                                                          (10) 
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where k1, k2 are scale factors in x-coordinate and y-

coordinate, respectively, θ is the deflection angle, xd, ,yd 

are translation displacements. Then each point of C*, [x, y, 

1]T needs to be traced back to [x, y]T, and so we update C*. 

 

3.3.2. Choosing the characteristic points from 

P and C
*
 for match 

The  characteristic points-set Z is chosen from the 

ones that are paticular in position. Here we choose the 

special boundary points and points on cupped surface to 

construct the set Z. 

( ){ }*, , ,i i i i i iZ a b a C b P a and b havethe same feature= ∈ ∈
f f ff f f

.            (14) 

 

3.3.3. Matching images composed of P and C
*
. 

1) Matching the characteristic points-set Z, the result is 

obtained by: ( )
2

1
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2) Matching images with the criteria: 

a. The image of C* should not be beyond Pb; 

b. The area covered by the image of C* should be as 

large as possible. 

3) Modify the value of neighbours number k, to achieve 

the optimal match. 

 

3.3.4. Embedding C
*
 into the points-set P to 

form the points-set H and obtain the new 2D 

image 
 Here embedding is refered to lying points of C* and P 

into the same coordinate, as is shown in Figure 3. 

 

 
Figure 3. the image of H, which is embedded C* into P 
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3.4. Inverse Mapping from 3D curve surface 

to 2D plane of LV 
Based on the idea of the LLE algorithm, points of H is 

inversely mapped to the 3D structure by means of the 

locally linear relationship among points:  

1) Points of C* are put as the data Xi,whose neighbour 

points-set is P. That means, to find the neighbour points 

of each 2D PFN point. 

2) Wij of the inverse mapping is computed, before each 

point of  C* will be linearly described by P. For  each 

point of P can be expressed by points in 3D ventricular 

points-set F, then C* can be linearly expressed by points 

of F. 

   Thereby, the 2D anatomical PFN data information is 

embedded into the 3D ventricular structure. Thus we 

finished the construction of 3D PFN structure. The result 

is shown as in Figure. 4.  

 

 
Figure 4. the construction of the PFN in the LV from different 

sides 

4. Discussion and conclusions 

The construction of an anatomically based network of 

canine Purkinje fibers, which takes advantages of using 

real anatomical data of the ventricular entity, has been 

described. It aims at keeping the locally linear 

relationship between points in the entity by means of 

applying manifold learning to constructing the inner 

linear-shaped structure of a closed curve surface, and then 

reconstructing PFN based on the anatomical entity. 

The purkinje fiber network, one of the most important 

part of the ventricular conduction system, is reproduced 

based on the real data, instead of using manually drawing 

or approximate shape. The mapping between the curve 

surface and the plane is successfully performed, which 

makes the 3D structure of PFN could be efficiently and 

completely reconstructed from the 2D PFN image. 
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