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Abstract 

We describe a new algorithm for the estimation of 

Cycle Lengths (CL) in the atria. In the spirit of wavelet 

transforms, the algorithm correlates the electrogram 

(EGM) signal to a set of functions that are specifically 

designed to extract the cycle length present in the signal 

on a given time window. This provides a CL vs time map, 

which is a highly informative representation of the 

electrical activation of the tissue. Subsequently, the 

information from this map is compressed into a 

histogram that unravels the distribution of the dominant 

CLs.. Finally, a sliding window tracks automatically the 

changes in CLs over a larger time scale. Results on both 

synthetic and real data are presented. The correlation 

with known cycle lengths in the synthetic cases is strong, 

and the CL distributions on real data are similar to those 

obtained from manually annotated EGMs.  

 

1. Introduction 

Catheter ablation is a common treatment for atrial 
fibrillation. During the procedure, endocardial 
electrograms (EGM) are recorded in various locations of 
the atria and analyzed by the physician in order to decide 
whether ablation must be performed or not. Traditionally, 
the mean cycle length is extracted from EGMs as an 
estimate of the mean duration between two consecutive 
activations in the tissue. It turned out to be a valuable 
guideline during the procedure: when measured in a fixed 
location (coronary sinus or left appendage for example) 
its value greatly increases after the ablation of a site 
involved in sustaining the atrial fibrillation (AF), and 
conversely, does not change after the ablation of an 
inactive site [1].  

During the procedure, the CL is usually computed 
from a bipolar filtered signal. More recently, the value of 
the CL was correlated to the dominant frequency of the 
signal; therefore, the Fourier Transform is also used now 
[2-4].  

In this paper, we present a new wavelet-like algorithm 

for the estimation of the Cycle Lengths (CL) in the atria. 
Section II describes the generation of time vs CL maps, 
and their transformation into a histogram to exhibit the 
dominant CLs on a given time window. In section III, 
comparison with Fast Fourier Transform is first presented 
on synthetic signal, and results on real data are compared 
to manually annotated EGMs. Results are discussed in 
the final section. 

2. Methods 

2.1. Wavelet transforms 

The wavelet transform is based on the computation of 
the inner product of a function with shifted and scaled 
versions of a ‘mother’ function. Very frequently, the 
mother functions are oscillatory in nature, so that 
dilations result in frequency changes, and shifts result in 
time shifts; the values of the correlations computed in 
given time and frequency ranges are usually plotted in the 
form of a time-frequency map. 

In the present work, we focus on cycle lengths instead 
of frequencies; therefore, we design a “mother function” 
!N that is suitable for our purpose, and we compute the 
correlation function of a signal x(t) with the mother 

function as 
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the similarity between signal x and the mother function. 
Therefore, in order to avoid using the term ‘mother 
function’ too loosely, it will be termed ‘template 
function’ in the following. 

2.2.  Template function  

The template function used here is equal to the sum of 
two identical Gaussian functions separated by N ms 
(Figure 1): 
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The width " is fixed and the time interval N between 
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the Gaussians is a parameter. 

 

Figure 1: Mother function used for CL measurement.  

Let s be an EGM signal. The correlation between its 
power s

2 and the i-th template function, with parameter 
Ni, is thus given by:  
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It can be written as: 
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where G(T) is the correlation function of the signal s2 and 
the Gaussian function ( !T, "): 
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Thus, if the spikes in s(t) are identical, the value of CNi 
is maximum when G(T ! Ni /2) and G(T + Ni/2) are 
simultaneously maximum. This occurs when the time 
interval between two consecutive depolarisations of the 
tissue are separated by a time interval of Ni ms. i.e. when 
the cycle length is equal to Ni. Consequently, the values 
of Ni chosen for the analysis are equal to the values of 

CLs to be analyzed, 
 
!

N
i

 being specific of a CL of Ni ms.  

In usual cases, a set of 101 template functions is used, 
corresponding to cycle lengths in the range 120-220 ms 
with a 1ms resolution. The decomposition over the whole 
basis can be represented as a CL vs. time map where the 
values along the z-axis represent the values of 
coefficients CN (Figure 2). 

2.3.    From CL vs time maps to CL detection   

In order to obtain a global picture of the cycle length 
contents of the signal, the maximum values of CN are 
computed for each N on a time window of size I: 
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A local maximum of MI at Ni corresponds to the 

presence of that particular CL in the signal during the 
time window I, the value of that maximum being 
proportional to the energy generated by the 
corresponding depolarization.  Typically, the length of I 
is chosen equal to 500 ms (Figure 2, bottom right).  

2.4. CL tracking 

The computation of the MI(N) on a sliding window 

allows the tracking of the CLs over a large time window 
W. A new map composed of each MI curve is then 
displayed. This map is a highly informative description of 
the pattern of cycle lengths during the time window W: 
changes, appearances or disappearances of CLs are 
displayed clearly in such a representation (Figure 3). The 
synthesis of this map is obtained by analyzing the local 
maxima of each MI curve; a histogram is finally obtained 
by counting the number of occurrences of each CL. This 
histogram, can be seen as the probability distribution of 
the CLs over the time window W. 

 

Figure 2: (Top) Synthetic EGM with three known CLs: 
200 ms for the first two CLs and 180 ms for the third one. 
(Bottom left) Values of  CN(T) for N between 120 ms and 
220 ms in a 500 ms time interval. High values (in white) 
correspond to the onset of a cycle at a given time: the first 
two white spots correspond to the onsets of the first two 
200 ms cycles and the third one to the onset of a 180 ms 
cycle. (Bottom right) MI curve extracted from the map. 
The two local maxima correspond to the two values of 
CLs of the signal: 180 ms and 200 ms.  

 

Figure 3: (Left panel) Result obtained on a synthetic 12s 
signal that has a fixed CL at 200 ms and two burst of 8 
depolarizations at 160 ms. (Right panel) Result obtained 
on a synthetic signal exhibiting CLs of increasing length, 
from 160ms to 200ms every 1ms.   
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3. Results 

The performance of this method is first compared to 
existing algorithms (Dominant Frequency and 
autocorrelation) on synthetic EGMs with known cycle 
lengths. In the third subsection, results on real data 
pertaining to 7 patients who underwent RF-catheter 
ablation for AF are presented.  

 

Figure 4: (Top) Value of CLs for a synthetic signal 
exhibiting randomly alternating depolarizations at 160ms 
and 200ms. (Bottom Left) Corresponding spectrum: the 
DF is 5.12Hz (i.e. 195 ms). (Bottom right) Application of 
our method to the same signal: two CLs are detected at 
160 ms and 200ms.  

 

Figure 5: Data recorded in the left appendage for a 
persistent AF case. The autocorrelation function results in 
several peaks due to the complexity of the signal. The 
MI(N) function computed over the same window exhibits 
only two peaks around the two values of CLs of the 
signal. The broadening of the peaks results from the 
fragmentation of the signal.  

3.1.    Comparison with Dominant Frequency    

The dominant frequency method for CL detection is 
based on a spectral analysis of the EGM signal over a 
time window I. After a preprocessing step (filtering and 
rectification), a Fast Fourier Transform is computed. It 
has been shown that the highest peak in the frequency 
domain (dominant frequency) is related to the mean CL 
of the signal over the time window I [2-4]. This method 
was shown to be efficient in particular for fragmented 
EGM, but some issues limit its use [5-6]. For example, a 
theoretical issue arises when two separate focal sources 
randomly alternate 160ms and 200ms CLs. The DF 
computed from the FFT analysis is linked to the mean 
frequency of the two sources. Figure 4 illustrates this 
property; on this synthetic example, the DF is 5.12Hz 
(195 ms). This value lies between 160 ms and 200 ms. 
The method proposed above leads to a histogram 
showing clearly the two expected values, 160 and 200ms.  

3.2. Comparison with autocorrelation 

The computation of the autocorrelation has been 
proposed for the evaluation of the CLs. This method was 
shown to be efficient especially for monophasic action 
potentials. But, in the case of a fragmented signal, the 
estimation of the CL seems difficult (Figure 5).     

3.3.  Results on real data 

The algorithm efficiency was estimated on 7 patients 
with drug-refractory AF. AF was paroxysmal in 3 
patients, persistent in 2 and permanent in 2.  

 

Figure 6: p-values obtained with the Chi-squared 
contingency test for distribution comparison between 
manually labeled CLs and automatically annotated CLs 
for AF. All p values are greater than 0.05, thereby 
supporting  the null hypothesis that the two sets of 
measurements arise from the same distribution. (Left)  
The p-values are presented by location. On each box, the 
central mark is the median, the edges of the box are the 
25th and 75th percentiles, the whiskers extend to the most 
extreme data points. (Right) The results are presented for 
each pathology, unlike the graph by location, the median 
value of p increases with the pathology seriousness. 
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 EGM was recorded prior to any ablation within the 
left atrium using a 10 bipole mapping catheter for at least 
30 seconds in the following sites: Left Appendage 
(LAA), Left Superior (LSPV), Left Inferior (LIPV), 
Right Superior (RSPV) and Right Inferior (RIPV) 
pulmonary veins. For each site, a single EGM was 
selected from the 10 available signals from signal to 
noise ratio considerations. CLs were manually measured 
for each selected signal to serve as a reference. On the 
same signals, CLs were estimated with the proposed 
algorithm on 500 ms sliding windows, every 250 ms, and 
CL histograms were compared to the reference with a 
Chi-squared contingency test, the null hypothesis being 
that the two measurements have identical continuous 
distributions: the test shows that the null hypothesis 
cannot be rejected under standard risk assumption of 0.05 
(i.e. p < 0.05) for all EGMs (Figure 6). 

Figure 7: Histogram of the estimated CL distribution 
(gray) and reference CL distribution (black) for the three 
median values of p. 

4.  Conclusions and discussion 

The proposed algorithm extracts the CL efficiently on 
both synthetic and real data. The correlation with known 
cycle lengths in the synthetic cases is strong, and this 
method is shown to be efficient for burst detection and 
multiple CL recognition. On real data, the CLs obtained 
with this method are similar to those obtained from 
manually annotated EGMs, especially in paroxystic AF. 
In addition, the results does not depend on the 
measurement site: the median of CL in each location are 
almost the same (Figure 6-left). But, the higher the 
complexity of AF is, the greater is the error between 
reference and automatic annotation on the results (Figure 
6-right). A possible explanation for this result is that in 
persistent AF cases, the depolarisations are usually 
fragmented and manually positioning single markers is 
more subjective (Figure 7). 

The method requires the adjustement of some 
parameters. In the results presented here, the width of the 
Gaussian function was set to 5ms, which is the mean 
duration of a non-fragmented depolarization. The 
influence of this parameter appears in the computation of 
G, which results in a Gaussian smoothing of the signal. 
Its value should be large enough to smooth the signal in 
order to avoid double counting for a single 

depolarization, but small enough to obtain a good 
resolution in CLs. Secondly, the size I of the time 
window has been set to 250 ms. This value guarantees 
that at least two subsequent depolarizations of the tissue 
can be observed.  Since the CL information from CL vs. 
time maps are condensed by estimating the maximum 
over this time window I (see section 2.3), a larger 
window should be considered only if the signal is stable.  

Furthermore, this method provides highly informative 
maps that characterize the EGM, and some parameters 
can be extracted from this representation: for example, 
stability can be estimated by the width of the peaks 
(Figure 5). Activation maps between different location of 
the atria prior to any ablation can be also compared in 
order to select site of interest.  But the efficiency as a 
guideline for ablation is still to be investigated. A strategy 
could be to correlate the complexity of a map at a given 
location prior to ablation to the increase of the CL after 
ablation at that location.  
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