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Abstract 

We entered the 10th Annual PhysioNet/Computers in 

Cardiology Challenge to predict which intensive care 

patients would experience an acute hypotensive episode 

(AHE) using physiologic data prior to the occurrence of 

the AHE.  An AHE was defined through mean arterial 

blood pressure (ABP).  We took a pragmatic approach to 

the Challenge. We explored six basic indices derived 

from ABP data near the forecast window including mean 

ABP and diastolic ABP.  We evaluated the predictive 

ability of each index on the provided training dataset and 

employed basic classification on the testing dataset.  All 

indices performed well on the training dataset and 

achieved a perfect score for Event 1 of the Challenge and 

scores from 32/40 to 37/40 for Event 2.  However, our 

best official score was 36/40 for Event 2.  These results 

stress the importance of continuous ABP monitoring in 

intensive care patients and indicate that sophisticated 

data analysis was not necessary to win the Challenge. 

 

1. Introduction 

The occurrence of acute hypotensive episodes (AHEs) 

in intensive care patients can significantly increase their 

mortality rate [1].  It is therefore important to be able to 

predict AHEs before they occur so that timely 

interventions can be administered to improve care and 

increase survival opportunities for these patients. 

We entered the 10th Annual PhysioNet/Computers in 

Cardiology Challenge on predicting AHEs in the 

intensive care unit.  The Challenge was to forecast which 

intensive care patients would experience an AHE within a 

predefined forecast window of one hour duration using 

physiologic data prior to the window (see Figure 1).  An 

AHE was defined as any period of ≥ 30 minutes during 

which ≥ 90% of the one-minute averages of the arterial 

blood pressure (ABP) waveform were ≤ 60 mmHg.  

The Challenge is explained in detail elsewhere [1].  

Briefly, physiologic signals including ECG and ABP 

waveforms, vital signs such as heart rate (HR) and 

systolic and diastolic ABP, laboratory test results, and 

other clinical data from a set of intensive care patients 

were provided.  The patients were classified into two 

groups, H (patients with an AHE in the forecast window) 

and C (patients without an AHE in the forecast window).  

The H group was further classified into two subgroups, 

H1 (patients who received a pressor medication) and H2 

(patients who did not receive a pressor medication).  The 

C group was likewise classified into two subgroups, C1 

(patients without an AHE outside the forecast window) 

and C2 (patients with at least one AHE outside the 

forecast window).  Physiologic data from 15 patients in 

each of the four subgroups with correct classifications 

were provided as the training dataset.  Physiologic data 

from 50 patients with partial classification information 

were also provided as the testing dataset.  Event 1 of the 

Challenge was to classify five patients in the H1 

subgroup amongst a total of ten patients in the H1 or C1 

subgroup.  Event 2 was to classify ten to 16 patients in 

the H group amongst 40 patients in the H or C group.  Up 

to four entries were allowed for each event.        

 

 
 

Figure 1. Segmentation of datasets.  Modified from [1]. 

 

We took a pragmatic approach to the Challenge.  That 

is, since an AHE was defined through mean ABP (MAP), 

we hypothesized that only basic ABP information would 

be needed to predict an AHE.  We further hypothesized 

that the closer in time the ABP data are to the forecast 

window, the more predicative they would be of an AHE.  

Based on these hypotheses, we explored several different 

indices derived from the ABP waveform.  We evaluated 
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these indices on the training dataset based on receiver 

operating characteristic (ROC) curves.  We then applied 

straightforward classification schemes for each of the 

indices on the testing dataset.  As required by the 

Challenge, our entire analysis was automated.  Our 

results showed that all of the indices performed well on 

the training dataset and achieved a perfect score for Event 

1 and very good scores for Event 2. 

 

2. Methods 

2.1.  Indices 

We explored six simple indices derived from the ABP 

vital signs or directly from the ABP waveform.  All 

analyzed ABP vital signs were pre-processed by linear 

interpolation of any missing data and removal of any 

spurious spikes.   

Index I is the 5-min average of the MAP vital signs 

(ABPMean) before the forecast window (see Figure 2a).  

Index II is the 5-min average of the ABP waveform 

before the forecast window (see Figure 2b).  This index 

was largely the same as Index I but did yield a better 

score for Event 2 (see Results section). 

Index III is the optimal exponentially weighted 

average of the 10-hr ABPMean before the forecast 

window (see Figure 2c).  The exponential weighting was 

optimal in the sense that it maximized the classification 

accuracy, as quantified via ROC curves (see below), in 

the training dataset.  The optimal time constant of the 

exponential weighting turned out to be 1.2 hrs.   

Index IV is the predicted ABPMean at the midpoint of 

the forecast window via linear regression of the 1-hr 

ABPMean before the forecast window (see Figure 2d).   

Index V is the 5-min average of the diastolic ABP vital 

signs (ABPDias) before the forecast window (see Figure 

2e).  Diastolic ABP is known to be related to MAP but 

could offer complementary prognostic value.   

Index VI is a combined index of the 5-min averages of 

the ABP waveform (Index II) and ABPDias (Index V) 

before the forecast window (see Figure 2f).  This index 

specifically represents a voting strategy in which an AHE 

is concluded, if predicted by both Index II and Index V 

(see below). 

 
 

                                          Figure 2: Indices derived from the ABP waveform. 
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2.2.  Evaluation on training dataset 

We evaluated the efficacy of each index on the 

training dataset.  We specifically tested the ability of each 

index to discriminate between patients in the H1 and C1 

subgroups and patients in the H and C groups so as to 

emulate Event 1 and Event 2 of the Challenge.  We 

quantified the discriminatory ability of each index in 

terms of the ROC area under the curve (AUC).  The ROC 

AUC indicates the probability that two samples, one 

drawn from each class, will be accurately classified [2]. 

2.3.  Classification on testing dataset 

We used straightforward classification schemes for 

each index on the testing dataset.  For Event 1, we 

classified the five patients with the lowest index levels in 

the H1 subgroup (see Figure 3a).  For Event 2, we 

classified ten to 16 patients with the lowest index levels 

in the H group, wherein the exact number of patients in 

this group was determined by maximizing the difference 

between the highest index level in the H group and the 

lowest index level in the C group (see Figure 3b). 

 

 
 

Figure 3. Classification on testing dataset. 

3. Results 

Table 1 summarizes the results of the six ABP derived 

indices on the training and testing datasets.  As can be 

seen, all of the indices performed well on the training 

dataset and achieved a perfect score for Event 1 and 

good, but somewhat different, scores for Event 2. 

Index I and Index II represented our first two entries in 

the Challenge.  These two indices were naturally similar 

and, in fact, ranked the patients in the same order for 

Event 1 and Event 2.  However, for Event 2, Index I 

classified 13 patients in the H group, whereas Index II 

classified 16 patients in this group.  These three 

additional patients ascribed to the H group by Index II 

turned out to be correct and improved our score to 36/40. 

Index III represented our third entry in the Challenge.  

This index performed the best on the training dataset, as 

it was the only index that was optimised on this dataset.  

However, to our dismay, this optimal index yielded a 

score of only 32/40 for Event 2. 

Index IV produced the same entries for Event 1 and 

Event 2 as Index II.  This index was therefore not 

submitted as an entry. 

Index V performed the best on the training dataset 

amongst the non-optimised indices.  Further, it achieved a 

score of 37/40 for Event 2.  We did not submit this entry, 

because we ascertained through simple logic that it could 

not yield a score > 37/40 for Event 2, which was the 

winning score. 

Index VI did provide a chance to win Event 2 and 

therefore represented our fourth and final allowed entry.  

However, this index only achieved a score of 36/40 for 

Event 2.  

4. Discussion 

Previous studies have shown that MAP is a good 

predictor of hypotension (e.g., [3]).  Further, for the 

purposes of the Challenge, an AHE was defined based on 

MAP.  It is therefore not too surprising that indices 

derived from MAP were accurate, but not perfect, in 

predicting AHEs in both the training and testing datasets.  

Indices derived from diastolic ABP showed similar 

prognostic capabilities perhaps due to its tight 

relationship with MAP.  Based on the overall results of 

the Challenge from all entrants [1], it is unclear whether 

perfect prediction was achievable.   

From our first and second entries, we determined that 

the patients numbered 214, 217, and 224 in Event 2 

belonged to the H group.  However, the level of the 

investigated indices for these three patients were usually 

the highest amongst the 16 lowest index levels (see 

Figure 4), which made it difficult to detect false positive 

patients and further improve our score for Event 2.   

 

Table 1. Results of the six ABP derived indices on the training and testing datasets. 

 
Training Dataset 

ROC AUC 

Test Dataset 

Scores 

 H1 vs C1    H vs C Event 1          Event 2 

Entry 

Index I 0.81    0.76 10/10            33/40 first entry 

Index II 0.85    0.75 10/10            36/40 second entry 

Index III 0.93    0.82 10/10            32/40 third entry 

Index IV 0.76    0.72 10/10            36/40 = second entry 

Index V 0.89    0.79 10/10            37/40 not submitted 

Index VI 0.82    0.75 10/10            36/40 fourth entry 
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Figure 4. Difficulty in improving the score for Event 2. 

 

We did also investigate other indices derived from 

ABP (systolic ABP, pulse pressure, cardiac output [CO] 

by ABP waveform analysis, and the ratio of the number 

of ABPMean ≤ 60 mmHg over the total number of 

ABPMean), ECG (HR variability [HRV] spectral powers 

and premature beats), and both ABP and ECG (ratio of 

MAP to HR and baroreflex sensitivity).  Indeed, some of 

these indices (e.g., HRV and CO) have been shown to be 

good predictors of hypotension [3,4].  However, these 

indices showed less or even little prognostic value on the 

training dataset.  Nevertheless, some of the indices here 

may offer value in other clinical scenarios such as 

predicting hypotension caused by certain mechanisms 

(e.g., hemorrhage) or as defined by a reduction in ABP.  

In conclusion, both MAP and diastolic ABP were 

excellent predictors of AHEs in the context of the 

Challenge.  Our best scores from the submitted entries 

were 10/10 for Event 1 and 36/40 for Event 2.  Our 

results emphasize the importance of continuous ABP 

monitoring in intensive care patients and demonstrate that 

sophisticated data analysis was not necessary to win the 

Challenge.  

Acknowledgements 

This work was supported by the NSF CAREER Grant 

0643477. 

References 

[1] Moody GB, Lehman LH. Predicting acute hypotensive 

episodes: the 10th annual PhysioNet/Computers in 

Cardiology Challenge. Computers in Cardiology 2009;36. 

[2] http://www.anaesthetist.com/mnm/stats/roc/Findex.htm 

[3] Reich DL, Hossain S, Krol M, Baez B, Patel P, Bernstein 

A, Bodian CA. Predictors of hypotension after induction of 

general anesthesia. Anesth Analg 2005;101:622-28. 

[4] Hanss R, Bein B, Ledowski T, Lehmkuhl M, Ohnesorge H, 

Scherkl W, Steinfath M, Scholz J, Tonner PH. Heart rate 

variability predicts severe hypotension after spinal 

anesthesia for elective cesarean delivery. Anesthesiology 

2005;102:1086-93. 

[5] Barcroft H, Edholm OG, McMichael J, Sharpey-Schafer 

EP. Posthaemorrhagic fainting. Lancet 1944;i:489-91. 

 

Address for correspondence 

 

Xiaoxiao Chen 

2120 Engineering, East Lansing, MI 48824, USA 

chenxia7@msu.edu 

 

 

548


