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Abstract 

This work proposes the application of generalized 

regression neural network multi-models to the prediction 

of acute hypotensive episodes (AHE) occurring in 

intensive care units. Contrasting with classical auto 

regressive representations, multi-model schemes do not 

recursively use model outputs as inputs for step ahead 

predictions. As result, prediction errors are not 

propagated over the forecast horizon and long-term 

predictions can be accurately estimated. The 

effectiveness of this strategy is validated in the context of 

PhysioNet-Computers in Cardiology Challenge 2009. 

The dataset considered consists of arterial blood 

pressure signals, obtained from MIMIC-II Database. A 

correct prediction of 10 out of 10 AHE for test set A and 

of 37 out of 40 AHE for test set B was achieved. 

1. Introduction 

Hypotension, a clinical condition characterized by 

abnormally low blood pressure values, is one of the 

recurrent situations occurring in intensive care units. If 

not promptly treated, acute hypotensive episodes may 

result in irreversible organ damage and, eventually, death. 

Therefore, the development of methodologies able to 

detect not only the presence of this condition but also to 

predict their occurrence is of extreme importance 

concerning appropriate clinical interventions. In fact, 

since clinical interventions to treat such events are 

usually invasive and aggressive, a prediction system that 

identifies an imminent event would be a significant 

benefit to timely support non-invasive and preventive 

treatments. 

In general, the development of automatic hypotensive 

predictive solutions explore the correlation of patient 

clinical information, such as arterial blood pressure 

(ABP), heart rate (HR) and oxygen saturation (SO2) with 

the onset of the hypotension episode. Bassale [1] 

proposed the use of parametric and non-parametric 

methods to analyze and characterize ABP before 

hypotensive episodes. He concluded that ABP variability 

and shape features have the potential to predict such 

events. Crespo et al [2] also suggested the use of changes 

in the ABP morphology occurring immediately before an 

episode of hypotension. In particular, they suggested the 

variance of the ABP signal and the variance of the wave 

slope as the most relevant features to consider when 

predicting AHE. Recently, Lehman et al [3] proposed a 

similarity-based searching and pattern matching 

algorithm, applicable to classification and forecasting 

tasks. Using real physiological measurements they 

employed the methodology to forecast hypotensive 

episodes in intensive care units. Frolich et al [4] 

suggested the use of baseline HR as a significant 

predictor of obstetric spinal hypotension. Basically, they 

showed that higher baseline HR may be a useful 

parameter to predict postspinal hypotension. 

Using spectral analysis of HR and ABP variability 

Pelosi et al [5] have identified precursors of hypotensive 

episodes during renal dialysis. Also using frequency 

analysis techniques, Reich et al. [6], investigated the 

correlation of HR variability analysis with hypotension 

events. Chamchad et al [7] found a significant correlation 

of nonlinear HR variability dimension analysis with the 

presence of hypotension, occurring after spinal anesthesia 

for cesarean delivery. Hanss et al [8] also concluded that 

HR variability analysis could be used to predict the 

occurrence of hypotension during spinal anesthesia. In 

particular, they investigated the ratio of low to high 

frequency peaks of the HR variability power spectrum 

(LF/HF) to the prediction of hypotension events after 

spinal anesthesia, for the specific cases of pregnant 

women [9] and elderly men [10]. More recently, Mancini 

et al [11] showed the potential of SO2 short-term 

variability in anticipating the hypotension onset. 

This work addresses the forecast of acute hypotensive 

episodes through the development of predictive multi-

models, applicable to ABP time-series. Multi-models do 

not recursively use model outputs as inputs for step ahead 

predictions. Therefore, prediction errors are not 

propagated and long-term predictions can be accurately 

estimated. Among regression models, neural networks 

have shown considerable capabilities to learn and to 

generalize from non-linear environments, enabling to 

capture the fundamental data dynamics. In particular, 

generalized regression neural network (GRNN) structures 

are employed here.  
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Moreover, multi-models can be trained by means of 

standard backpropagation algorithms. In fact, each 

independent neural sub-model is used for each sampling 

instant and does not depend on previous predictions. In 

this work neural sub-models were trained using arterial 

blood pressure signals, obtained from MIMIC-II 

“numerics record” dataset (H and C datasets). No 

information from “clinical records” was used.  

The paper is organized as follows. In section 2 the 

proposed methodology is described. In section 3 the 

results using PhysioNet-Computers in Cardiology 

challenge 2009 datasets are presented and discussed. 

Finally, in section 4, some conclusions are drawn.  

2. Methods 

Figure 1 depicts the methodology proposed in this 

work. 

 

Figure 1 - Proposed scheme. 

 

The input consists of a discrete ABP signal (sampled 

once per minute) considering the information available 

before t0, the instant where the forecast period starts. 

This signal passes through a set of pre-processing 

techniques, namely to deal with missing information, 

noise reduction and normalization. Then, a correlation 

analysis procedure is carried out considering the 

processed ABP signal and a series of ABP templates, 

representative of historical ABP trends evolution. From 

this correlation analysis the most similar templates are 

identified and the correspondent multi-models, previously 

trained, selected. These specific neural models are then 

employed to predict the future evolution of the particular 

ABP input signal, from instant t0 until the end of the 

forecast window (one-hour). Finally, an AHE is 

identified if at least 90% of the ABP prediction signal 

during a period of 30 minutes or more is at or below 60 

mmHg. 

2.1. Multi-models 

This step involves modeling each ABP template 

signal, based on a GRNN multi-model approach, with the 

aim of prediction. Consider a time-model series described 

by the following discrete-time nonlinear auto regressive 

representation  

( )1( ) ( 1), ( 2),..., ( )y k f y k y k y k n= − − −  (1)

where y(k) is the value of the ABP signal at minute k, n is 

the order of the model and 1f  is a mapping such that 

1 : nf ℜ → ℜ . Assuming the knowledge of mapping 1f , 

and considering the current instant k, it is possible to 

predict one step ahead ABP value by 

( )1( 1) ( ), ( 1),..., ( 1 )y k f y k y k y k n+ = − + −  (2)

Considering the instant 2k +  

( )1( 2) ( 1), ( ),..., ( 2 )y k f y k y k y k n+ = + + −  (3)

This description can be reformulated [12], and 

expressed as a function of past observed values 

1 1( 2) (   ( ( ),..., ( 1 )),

                      ( ),..., ( 2 ) )

y k f f y k y k n

y k y k n

+ = + −

+ −
 (4)

( )2( 2) ( ), ( 1),..., ( 1 )y k f y k y k y k n+ = − + −  (5)

In general, a particular future time instant P can be 

expressed in a compact form by  

( )( ) ( ), ( 1),..., ( 1 )Py k P f y k y k y k n+ = − + −  (6)

Thanks to this structure, predictions do not depend on 

previous predictions, but only on information available at 

current instant k. However, using multi-models, one 

independent model ( if ) has to be used for each sampling 

instant within the prediction horizon. As result, if a future 

instant P has to be predicted, P distinct regression models 

have to be derived. 

2.2. Neural-network multi-models 

Each regression sub-model ( if ) is here described by a 

distinct GRNN, a type of radial basis function network. 

The principal advantages of GRNN are that it enables a 

fast learn and it is suitable for smooth function-

approximation problems [13]. The main drawback of 

GRNN is that, like kernel methods, it suffers from the 

curse of dimensionality. Although the multi-model can be 

used for long-range prediction, each neural network is 

trained by means of a standard backpropagation 

algorithm (actually, training a GRNN involves the 

estimation of kernels location and hidden-to-output layers 

weights). This is viable since the structure of multi-

models is not recursively used and, therefore, predictions 

do not depend on previous predictions.  
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2.3. Templates and correlation analysis 

To define the ABP templates a representative 

historical dataset composed of past and future tendencies 

has to be considered. The dataset consists of the 60 

training records (H and C), available in Physionet/CinC 

challenge [14]. Actually, one signal (C1#4, a40234) was 

excluded, since it presents a significant discontinuity in 

the neighborhood of the instant t0.  

For each signal an appropriate period of time, 

immediately before and after the beginning of the defined 

forecast window (instant t0), respectively 6 hours and 1 

hour, is considered. To address future predictions, each of 

these time series templates (H and C) is modeled using 

the GRNN multi-model approach. These models are 

trained using past information available (before t0), while 

validation is performed based on future information (after 

t0). 

Given a new ABP testing dataset, truncated at time 

instant t0, the ABP forecast is predicted based on 

previous trained GRNN multi-models. To select the 

specific multi-models a correlation analysis procedure 

takes place. Basically, correlation coefficients between 

new ABP data and stored ABP templates are firstly 

computed. Then, the ABP templates that present 

correlation coefficients verifying a given threshold value 

are selected. In particular, being CC a vector composed 

of all positive correlation coefficients (sorted in 

descending order), the first k templates are selected if 

equation (7) is verified. 

( )
    1 .. 

( )

sum CCi
tolerance i k

sum CC
> =  (7)

The occurrence of an AHE, within the forecast 

window (one hour), is finally assessed according to the 

AHE definition [14]. 

 

3. Results 

3.1. Neural network multi-models 

When modeling each ABP signal template, the 

selection of the order (n) and the size are of particular 

importance. The parameter size is defined as the period 

before the starting of the forecast window, from where 

information is used for training purposes. In order to 

estimate the parameters (order and size) an optimization 

procedure was followed, through the minimization of the 

least square prediction error over the forecast window.  
0 60

2

,
0

ˆ( ( ) ( ) )

k t

size order
k t

min y k y k

= +

=

−∑  (8)

 

Variables y(k) and ˆ( )y k define, respectively, the actual 

and the approximated ABP signal. This minimization 

procedure was carried out considering different values for 

the order and for the size parameters, namely 

[60...90]order ∈  and [120...180]size ∈ , with increments 

of 10 minutes.  

The GRNN structures have been defined and trained 

using the newgrnn function [15], available in Matlab 

toolbox. Figure 2 presents the training results for the 

record #H1_4 (a40834). For this specific signal the order 

and size values are, respectively, 80 and 140 minutes. 

 

Actual 
ABP signal

Approximated
ABP signal

t0=600

    SIZE=140
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Figure 2. GRNN modeling and predicting, #H1_4 (a40834). 

 

It is important to stress that the neural multi-models 

predict future behavior over the whole prediction horizon 

only using information before the starting of the forecast 

window (instant t0). Moreover, to reduce the number of 

sub-models, each GRNN structure was trained to deal 

with 15 step ahead predictions. As result, for each ABP 

template 4 neural sub-models have been trained. 

3.2. Acute hypotensive episodes 

Using the present strategy, testing dataset available in 

Physionet/CinC challenge (10 records for A dataset, and 

40 records for B dataset) was used for validation 

purposes. Firstly, each of these 50 datasets was correlated 

with the ABP templates, considering a specific period of 

size minutes before instant t0. The correspondent GRNN 

models, determined from the correlation analysis 

procedure, are used to predict future ABP values. The 

global prediction signal is computed as the weight 

average of all estimated predictions, being the 

identification of AHE straightforward computed. Figure 3 

shows the prediction of the specific ABP signal #A1_10 

(110bnm) over the forecast horizon (one hour) and the 

respective AHE. 
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Figure 3. Prediction and AHE identification - signal #A1_10. 

 

Table 1 presents the occurrences where AHE episodes 

have been identified for A and B records. A correct 

prediction of 10 out of 10 AHE for test set A and of 37 

out of 40 AHE for test set B was achieved. 

 
Table 1. AHE detection 

 AHE detection 

Dataset A  1, 2, 4, 9, 10 

Dataset B  2, 3, 5, 7, 9, 14, 17, 18, 22, 23, 25, 26, 34, 38, 39 

 

Although these results are relevant, the experiments 

performed have showed that the robustness of forecasting 

methodology is highly dependent on several parameters, 

namely order, size, and tolerance. Future work will focus 

on deriving compact template sets that characterize the 

dynamics that distinguish different ABP evolution. In this 

case, a PCA strategy could be easily used to capture the 

major characteristics of the testing dataset, reducing the 

number of templates and, consequently, the number of 

multi-models involved. Additionally, other sources of 

information (such as clinical record data) can be 

included. 

 

4. Conclusions 

This work proposed a methodology to predict acute 

hypotensive events over a specific time period. Using 

arterial blood pressure time series, a modeling strategy 

based on GRNN multi-models was implemented, 

enabling to estimate predictions over a forecast horizon. 

Applied to ABP time-series, considered in the 

PhysioNet/CinC challenge 2009, the referred strategy 

allows to adequately capture its dynamics and, then, to 

predict the onset of hypotensive events.  

The reduction of the number of historical templates, 

and therefore of the number of neural-networks, is a 

possible direction of future work. 
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