
Analysis of Multidomain Features for ECG Classification

M Llamedo Soria1,2,3, JP Martínez1,3

1Aragon Inst of Eng Research, Univ of Zaragoza, Aragon, Spain
2Universidad Tecnológica Nacional, Buenos Aires, Argentina

3CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain

Abstract

In this work we studied the classification performance of

models based on intervals, angles and amplitudes. These

features were extracted from both ECG leads and differ-

ent scales of the wavelet decomposition. The MIT-BIH Ar-

rhythmia database was used, following AAMI recommen-

dations for class labeling and results presentation. The

training and testing set and any cross-validation division

of the database was made patient-oriented. A floating fea-

ture selection algorithm was used to obtain best perform-

ing models in the training set. This model was evaluated in

the test set obtaining a global accuracy of 90%; for normal

beats, sensitivity (Se) 92%, positive predictive value (+P)

85%; for supraventricular beats, Se 88%, +P 93%; for

ventricular beats Se 90%, +P 92%. This classifier model

based on multidomain features performs better than other

state of the art methods, with a fraction of the features.

1. Introduction

The analysis of the electrocardiographic signal (ECG)

provides a noninvasive technique to analyze the heart func-

tion for different cardiac conditions. Particularly, auto-

matic classification algorithms focus on rhythm and mor-

phology analysis of the ECG. Disturbances in the rate, reg-

ularity, site of origin or conduction of the electrical im-

pulses are known as arrhythmias [1]. While some types of

arrhythmias represent a life threat in the short term (e.g.

ventricular fibrillation), there are other types that appear

less frequently and represent a long-term threat without

proper treatment. It is in those later cases, which require

carefully inspection of long ECG recording, where the use

of automatic algorithms represents a significant help for

diagnostic.

Many algorithms for ECG classification were developed

in the last decade (e.g. [2, 3, 4]), but only few of them

have completely comparable methodologies and therefore

results, although AAMI recommendations [5] have been

available since 1998 for easing this problem. From those

articles, some of them can classify without any local expert

(LE) assistance, but others can take advantage from a LE

to improve the performance. The database used without

exception by all the groups was the MIT-BIH arrhythmia

database [6].

Regarding to the features used, the RR intervals were

used by almost all groups. Other typical choices were the

decimated ECG samples (mostly from the QRS complex),

or transformed by Hermite polynomials or wavelet decom-

position (WT). Some groups use features that integrates

information present in both leads, like the vectocardio-

gram (VCG) maximum value (V CGmax) and VCG angle

(V CGangle).

Since the methodology for feature extraction generally

requires previous ECG delineation, we propose an ECG

classifier that uses a set of features already calculated in

the delineation stage. These features should preferably be

calculated from the WT in a multilead (ML) approach, re-

sulting in a classification model robust to the typical noise

present in ECG signals. The objective of this work is to de-

velop and evaluate a model for fully automatic ECG clas-

sification (without LE intervention), under the hypothesis

that wavelet and ML features should provide a better clas-

sification performance.

2. Methods

2.1. ECG database

In this work we used the MIT-BIH Arrhythmia database

[6] for training and evaluating the classifier. The database

consists of 48 two-lead recordings of approximately 30

minutes and sampled at 360 Hz. The first 23 recordings

were extracted from routine ambulatory practice while the

remaining 25 were selected because of the presence of less

common complex ventricular, junctional and supraventric-

ular arrhythmias. The two recorded leads are not the same

in all recordings, depending on the arrhythmia and physi-

cal limitation of the subject’s body. The annotations pro-

vided with the database were used for training and test-

ing purposes, following the recommendations and class-

labeling of AAMI. We adopted the training (DS1) and
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test (DS2) set division scheme used in [4] for compara-

tive purposes of the results. We also studied the result of

training in a subset of recordings of DS1 (DS1M ), given

that recordings 201 and 207 have atypical beat morpholo-

gies that decrease the generalization ability desirable from

training process. Also AAMI unclassified class (Q) was

discarded since it is poorly represented in the database. Fi-

nally, a class-labeling modification to the AAMI standard

was evaluated, considering fusion (of normal and ventric-

ular beats) and ventricular classes, as the same ventricular

class. We will refer to this modification as AAMI2 label-

ing. The division scheme is summarized in Table 1.

Table 1. Scheme of the division of the MIT-BIH database

into training (DS1 and DS1M ) and testing (DS2) sets.

Recordings with paced beats were excluded. Heart beats

classes are N: normal, S: supraventricular, V: ventricular

and F: fusion.
N S V F #Rec

DS1 45673 929 3755 412 22

DS1M 42502 706 3366 410 20

DS2 44053 1833 3202 388 22

Full MIT-BIH 88175 1635 7121 822 44
DS1 comprises recordings 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,

124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230.

DS2 comprises recordings 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,

212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234.

DS1M is DS1 without 201 and 207. Recordings 102, 104, 107, 217 have paced

beats and were excluded.

2.2. Signal processing

All recordings in the MIT-BIH database were first pre-

processed to remove artifacts like described in [4]. No

energy or amplitude normalization was done, as we were

interested in some amplitude related features. As our ob-

jective is the evaluation of a classification model, the QRS

location is assumed to be known and used from the annota-

tions included with the MIT-BIH. Many of the considered

features are based on the wavelet transform (WT) of the

ECG signal. The WT is defined for a continuous signal

x(t) as

Wax(b) =
1√
a

∫ +∞

−∞

x(t) 

(

t− b

a

)

dt, a > 0. (1)

The WT can be discretized using a dyadic scheme where

the scale factor is a = 2k for k ∈ Z+, with the same sam-

pling rate at each scale (Algorithme à trous) and is easily

implemented as a filter bank. We used a quadratic spline

as the prototype wavelet  (t), being the derivative of a

smoothing function. As a result of this transformation, the

original ECG signal can be analyzed as a smoothed deriva-

tive at different scales (frequency bands) and translations

(times). See [7] for a detailed description of WT and its

implementation for ECG delineation.

2.3. Classification features

Following the conclusions of previous works [2, 4], we

included in our model both interval and morphological fea-

tures. As interval features we used the typical features

from the RR sequence RR[i − 1], RR[i], RR[i + 1], the

median of the last 10 and 20 RR intervals as an estimate

of the local rhythm, and the mean RR interval of the last

10 minutes (RRavg) as a global rhythm.

As morphological features we considered the QRS

width (QRSW ), the maximum modulus of the QRS loop

(V CGmax) and the angle of the loop at this position

(V CGangle) . Other morphology related feature is the

wavelet scale where the QRS complex is mostly projected,

since fast evolving signals (like a normal beat) tend to be

projected in lower wavelet scales (higher frequency con-

tent). This feature is calculated as a weighted sum, where

the

Ai =
1

M

M
∑

m=1

∣Wix(tm)∣ (2)

are the mean absolute peak amplitude for scales i =
1, 2, . . . 6 and M ≤ 2, being M the number of peaks de-

tected at each scale at times tm. Then is calculated the

QRS projected scale for each lead (Slead
QRS ) as

SQRS =

∑6
i=1Ai.i

∑6
i=1Ai

. (3)

As the features to include in our model belong to di-

verse domains, like ℝ, ℝ+and S2 (angular or directional

domain) we have to transform or deal with them in order

to perform classification tasks. In our case, we assume

that each feature is normally distributed and therefore valid

in the ℝ domain. According to this, all interval and mor-

phological features defined in ℝ
+should first being trans-

formed to the ℝ domain by a log operation. Also circular

(or S2) features requires an special treatment that will be

briefly described, the interested reader is referred to [8] for

details. First consider the circular feature #, as the argu-

ment of a complex number of unitary module ej#, being

j2 = −1. Then, the expectation of this modified feature

defines the mean direction and circular variance[8], coun-

terparts of the linear mean and variance.

E[expj#] = �#e
j�c

# (4)

�c
# = arg(E[expj#]) (5)

V c
# = 1−

∥

∥E[expj#]
∥

∥ = 1− �# (6)

Where �# is also known as the resultant length. Then

for a multivariate F -dimensional model, where Fw are the

indexes of the circular features, the maximum likelihood

parameter estimates are

(�̂x)f =

{

1
M

∑M
m=1 xf (m) if f /∈ Fw

arg
(

1
M

∑M
m=1 exp

(jxf (m))
)

else
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Σ̂x =
1

M − 1

M
∑

m=1

x

′

(m).x
′

(m)T (7)

being

x

′

(m) =
[

x
′

1(m) . . . x
′

F(m)
]T

(8)

x
′

f (m) =

{

xf (m)− (�̂x)f if f /∈ Fw
(xf (m)− (�̂x)f )mod 2� else

(9)

As can be noted from equation 7, Σ̂x can be directly

calculated from the circular mean (�̂x)f and the raw data

without any other calculation, even with the same algo-

rithm used in linear features.

2.4. ECG classification

We used both linear and quadratic discriminants for

classification purposes. The general quadratic discrimi-

nant functions for feature vectors x, and the i-th class can

be written as

gi(x) = −1

2
x
TΣ−1

i x+ �T
i Σ

−1
i x (10)

−1

2
�T
i Σ

−1
i �i −

1

2
log(∣Σi∣) + log(P (!i))

where �i, Σi and P (!i) are the mean vector, covariance

matrix and a priori probability of the i-th class. The values

of �i and Σi were computed fromDS1/DS1M , and equal

a priori probabilities were considered. The classification

rule assigns x to the class i which results in the maximum

gi(x).
When covariance matrices Σi are assumed equal for all

classes, the discriminant functions become linear. In this

case, a pooled covariance matrix Σ is calculated as in [4].

All classification tasks where performed with the PRtools

toolbox [9] for Matlab.

2.5. Model selection and dimensionality re-

duction

It is well known that low dimensional models general-

ize better to examples not presented during the training

phase, resulting in a more robust and realistic classifier.

In order to obtain the smallest, best performing model a

floating feature selection algorithm was used [10]. Also

many models were explored empirically, following the re-

sults obtained from the floating search.

2.6. Performance evaluation

All models were evaluated in DS1/DS1M using a k-

fold cross-validation scheme, where each fold is one of the

22/20 recordings present in each division scheme. This is

motivated by the fact that the automatic classifier will have

to deal with new subjects instead of new heart beats from

the same subjects. It is clear from [4] that this later scheme

tends to optimistically bias the results.

The performance was measured in terms of the global

accuracy, class sensitivity (Se), and the class positive pre-

dictive value (+P) as suggested in [5] for both, training

and testing datasets. Although the AAMI recommenda-

tion does not suggest any measure to deal with the strong

class size unbalance in the MIT-BIH, we equalize class

sizes previous to calculate the class +P. Up to the moment

we have no indication that any other group addressed this

problem in any way.

Finally DS1/DS1M were used to train the best per-

forming model and DS2 exclusively for testing purposes.

3. Results

Results of the model selection procedure are shown in

Table 2. The best model for each combination of dataset

and labeling are showed for comparison. As we are in-

terested in evaluating the dataset reformulation and the la-

beling scheme, we selected two models for the final test

in DS2. Results and confusion matrix in the test set are

shown on table 3 and 4 respectively. The best models

highlighted in table 3 includes the features RR[i], RRavg ,

S1
QRS , S2

QRS for the AAMI2 labeling, and for the original

AAMI labeling QRSangle was added.

4. Discussion and conclusions

The floating feature selection algorithm did not perform

as well as expected, obtaining suboptimal models that were

modified to achieve the performance detailed in table 2.

Although this limitation, the algorithm provided a coarse

estimation of the feature’s performance, allowing a poste-

rior fine tuning. From table 2 we evaluated the general-

ization performance of the best performing models trained

in both DS1 and DS1M . When testing in DS2, all our

selected models performed as good or better than the sug-

gested in [4]. Other interesting aspect about these models

is the considerable smaller size than previous works, thus

improving the parameter estimation in smaller datasets and

favoring the generalization. The final decision was made

considering both performances in DS1/DS1M and DS2,

resulting our choice in favor of a model of 4 features:

RR[i], RRavg , S1
QRS and S2

QRS .

The alternative labeling suggested in this work

(AAMI2) improved the classification performance of the

resulting classes, this could be produced because of the

subtle differences between V and F classes and the low

representation of the F class in MIT-BIH. Other remark-

able aspect is the careful design of the training set, avoid-
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Table 2. Performance for each model on DS1/DS1M separating all classes. The results are expressed in percentages.

Normal Suprav. Ventr. Fusion Total

Trained in labeling size Se +P Se +P Se +P Se +P Acc Se +P

DS1 AAMI 5 64 76 74 69 31 89 93 54 75 75 67

DS1 AAMI2 7 88 78 80 91 86 87 NA1 85 85 85

DS1M AAMI 5 83 87 81 93 79 88 94 74 84 84 86

DS1M AAMI2 4 92 86 86 93 88 88 NA1 89 89 89
1AAMI2 labeling consider Fusion and Ventricular classes as Ventricular.

Table 3. Final evaluation for the best performing models, trained in DS1/DS1M and tested in DS2 separating AAMI/2

classes. All results are expressed in percentages.

This work

{

de Chazal et al. [4]

Normal Suprav. Ventr. Fusion Total

Trained in labeling size Se +P Se +P Se +P Se +P Acc Se +P

DS1M AAMI 5 72 90 90 94 89 86 91 75 86 86 86

DS1M AAMI2 4 92 85 88 93 90 92 NA1 90 90 90

DS1 AAMI 48 87 52 76 39 78 82 89 86 80 80 68
1AAMI2 labeling consider Fusion and Ventricular classes as Ventricular.

Table 4. Confusion matrices for the final evaluation of highlighted models in table 3. On the left the AAMI labeling model,

and on the right the AAMI2 model.

R
ef

er
en

ce

Algorithm

f n s v Totals

F 353 18 1 16 388

N 9053 31918 1884 1331 44186

S 19 43 1648 126 1836

V 268 24 47 2875 3214

Totals 9693 32003 3580 4348 49624

R
ef

er
en

ce

Algorithm

n s v Totals

N 40532 2434 1220 44186

S 126 1622 88 1836

V 319 46 3237 3602

Totals 40977 4102 4545 49624

ing the inclusion of rare examples, like in rec. 201 and 207

that degrades generalization.

Future improvements should corroborate the general-

ization capability of the models studied in this work in

databases like AHA. Another improvement is the adapta-

tion to the patient under study by means of a local expert.
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