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Abstract

The objective of this study is to facilitate the home

follow-up of patients with implantable cardiac devices. To

do so, two methods to synthesize 12-lead ECG from two in-

tracardiac EGM, based on dynamic Time Delay artificial

Neural Networks are proposed: the direct and the indirect

methods. The direct method aims to estimate 12 Trans-

fer Functions (TF) between two EGM and each surface

ECG. The indirect method is based on a preliminary or-

thogonalization phase of ECG and EGM signals, and then

the application of the TDNN between these orthogonalized

signals. Results, obtained on a dataset issued from 15 pa-

tients, suggest that the proposed methods (especially, the

indirect method which provides faster results, minimizing

data storage) represent an interesting and promising ap-

proach to synthesize 12-lead ECG from two EGM signals.

Indeed, the correlation coefficients, between the real ECG

and the synthesized ECG, lie between 0.76 and 0.99.

1. Introduction

Patients with Implantable Cardiac Devices (ICDs), re-

quire regular scheduled hospital visits to perform patient’s

follow-up and to monitor whether their ICDs is working

optimally. Current developments have for objective to pro-

pose a remote follow-up of these patients. The cardiac

electrical activity acquired from the ICDs, named Electro-

GraMs (EGM), show different morphologies, when com-

pared to those of the surface ElectroCardioGram (ECG).

Since the physician consider the surface ECG as a refer-

ence signal for the analysis of the cardiac activity, we in-

vestigate in this study the feasibility of synthesizing the

standard 12-lead ECG from only two EGM recordings.

The use of these two EGM is justified by the fact that in

practice the minimal configuration of ICDs contains al-

ways these two EGM leads.

In previous works [1, 2], the 12-lead ECG is synthe-

sized by using linear filtering. However, in a real appli-

cation, noise and artifacts generated by electrode displace-

ment, changes on the patient’s body position or cardio-

respiratory interactions may influence the relationships,

over time, between the EGM and the ECG. Thus stochas-

tic and non-linear phenomena crop up, and time series dy-

namics cannot be robustly described using classical linear

filtering. We propose in this paper two non-linear meth-

ods, namely the direct method and the indirect method,

based on a dynamic Time Delay artificial Neural Network

(TDNN) [3, 4]. The direct method aims to estimate 12

Transfer Functions (TF) between the two EGM and each

ECG lead, and the indirect method is based on: i) the ex-

traction of a 3-dimensional representation of the surface

ECG (or VectorCardioGram, VCG [5]), ii) the orthogonal-

ization of the two EGM signals, to obtain a VectorGraM

[1] (or VGM), by using the Principal Component Analysis

(PCA) [6], and iii) the estimation of three TF between the

two VGM and each lead of the obtained VCG.

2. Problem formulation and background

2.1. Signal Model

The problem that we propose to study can be modeled

as follows:
x[m] = F(s[m]) + ν[m] (1)

Where the outputs {x[m]}m∈N
, representing the surface

ECG, are considered as an unspecified non-linear function

F of the inputs {s[m]}m∈N
, representing the EGM data,

plus an additive white noise {ν[m]}m∈N
. The problem of

the surface ECG signal synthesis can thus be approached

by a classical two-step procedure, including a training step

and a synthesis step. The training step aims to identify

the function F (F , is specific to each patient) by using a

dataset of x[m] (ECG) and s[m] (EGM) signals, simulta-

neously acquired in an attended laboratory setting during

the implant of the ICD. The synthesis step is devoted to the

estimation of surface ECG, x̂[m], by exploiting only the

EGM, s[m], and the estimate, F̂ of F . Two different meth-

ods, namely the direct method and the indirect method, are

proposed to estimate the function F . Nevertheless, before

detailing these two methods, let us give a brief descrip-

tion of the 3D cardiac electrical activity and the TDNN

architecture, and justify why these tools are used in our

approach.
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2.2. The 3D representation of the cardiac

electrical activity

The VCG is an orthogonal lead system that reflects the

electrical activity in the three perpendicular directions X,

Y, and Z. Although the 12-lead ECG is considered as the

reference setup for the analysis of the cardiac electrical ac-

tivity, the VCG contains useful information for some ap-

plications [5, 7]. Indeed, it is well-known that the VCG is

superior to the ECG in showing phase differences between

electric events in different parts of the heart. In addition,

contrary to the standard 12-lead ECG, the analysis based

on VCG loops has been found to i) better compensate the

changes in the electrical axis caused by various extracar-

diac factors [8], such as respiration, body position, elec-

trode positioning, and so forth, ii) give a compact represen-

tation of the cardiac electrical activity, minimizing storage

needs, and iii) provide a solution to the time synchroniza-

tion problem which arises in cardiac data. These charac-

teristics of the 3D representation of the cardiac electrical

activity seem to be useful in our case (see point i) and ii)

just above). The VCG and the VGM are derived by ap-

plying the PCA (see [2] for more details) on the 12-lead

ECG and on the two EGM recordings, respectively. For

ECG, we just take into account the three largest eigenval-

ues of the covariance matrix (the PCA is used to reduce

and to orthogonalize the ECG data). Regarding the EGM,

the two eigenvalues of the covariance matrix are taken into

account (in other words, the PCA is not used here to re-

duce the number of components, but just to orthogonalize

the EGM data).

2.3. Dynamic Time Delay artificial Neural

Network

It is well-known that feed-forward artificial Neural Net-

works (ANNs) with an input layer, a single hidden layer,

and an output layer may be used as universal function ap-

proximators, under very general conditions for the activa-

tion functions [3,4]. Time Delay ANNs (TDNN) are a par-

ticular implementation of feed-forward ANNs, in which

delayed versions of the input signals are presented at the

input layer of the network. TDNNs have thus an extended

capability for time series processing, with respect to feed-

forward ANNs, as they include a representation of the k

past samples of each input signal.

3. Methods

Two steps, namely the training step and the synthesis

step, are necessary both for the direct method and the indi-

rect method.

3.1. The training step

3.1.1. Case of the direct method

Twelve different MISO (Multi-In Single-Out) systems,

M1, M2,..., M12, between the two-rows input vector s[m]
(EGM) and each row of the output vector x[m] (12-lead

ECG) are estimated. For each patient, 12 TDNN are

trained by using 20 heartbeats of concurrent ECG and

EGM. Each TDNN is defined with an input layer of NI =
12×k samples, a hidden layer of (NH) neurons with a

sigmoid activation function and one linear output neuron.

3.1.2. Case of the indirect method

The training step of the indirect method is divided into

three sub-steps: i) the extraction of the 3D cardiac electri-

cal activity of the SECG, ii) the orthogonalization of the

two EGM signals, to obtain a VGM, and iii) the estimation

of the TF between the VGM and the VCG. More precisely,

let us consider that x[m] = [x[m]1,· · ·, x[m]N ]Tm=1,...,M

and s[m] = [s[m]1,· · ·, s[m]K ]Tm=1,...,M where N=12 is

the number of ECG leads, K =2 is the number of EGM

leads and M is the number of available samples. The es-

timation of the VCG and the VGM is performed by using

PCA [1, 2] so that the following results hold:

zV CG[m] = W V CG
T
x[m]

zV GM [m] = W V GM
T
s[m] (2)

Where W V CG is an (12×3) matrix and W V GM an (2×2)
matrix. Then, three different MISO systems, M1’, M2’

and M3’, between the two-rows input vector zV GM [m]
and each row of the output vector zV CG[m], are estimated

using a TDNN scheme. Each TDNN is defined with an

input layer of NI =3×k samples, a hidden layer of (NH)
neurons with a sigmoid activation function and one linear

output neuron.

Different structures have been tested for the TDNN, by

changing k and NH . The best performance (trade-off be-

tween the quality of reconstruction and computing time of

the training step) is obtained for k = 4 samples at the re-

sampled frequency of 128 Hz and NH of around 50 neu-

rons (the parameters k and NH are the same for both the

direct method and the indirect method). In this paper, the

approach proposed by D. MacKay [9] and implemented in

the Neural Network Toolbox of Matlab is used to improve

the generalization of our procedure and to avoid overfit-

ting.

3.2. The synthesis step

Let’s suppose that we only observe the EGM of Q suc-

cessive heartbeats (in our case Q = 11). The synthesis step

is devoted to the estimation of surface ECG by exploiting
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the EGM and different parameters identified in the training

step. For the direct method, the 12-lead ECG is obtained

directly by using M1, M2,..., M12. Regarding the indirect

method, the linear transform W V GM is applied on EGM,

which provides us the (2 × M ′) VGM matrix (where M ′

is the number of records of the EGM used in the synthe-

sis step). Then, the (3 × M ′) VCG matrix is estimated

by using M1’, M2’ and M3’. Finally, the 12-lead ECG is

obtained by multiplying the pseudo-inverse of the linear

transform W V CG with the estimated VCG.

4. Database and results

4.1. Database

A dataset issued from 15 patients (P1 to P15) is used for

evaluating the performance of the two proposed methods.

The ECG and EGM were simultaneously recorded with a

GE Cardiolab station during the implant of ICDs with an

initial sampling rate equal to 1000 Hz and then subsam-

pled at 128 Hz and low-pass filtered at 45 Hz. Each record

of the database is composed of 12 standard surface ECG

channels, namely I, II, III, AVR, AVL, AVF, V1, to V6

and two EGM electrodes BIPOA and BIPOVD (which are

the electrodes commonly available on dual chamber pace-

makers). We also classify the patients into three different

types:

• Type I: 10 patients (P1 to P10) showing sinus rhythm;

• Type II: Three Patients (P11 to P13) presenting some

Premature Ventricular Beats (PVB);

• Type III: Two patients (P14 and P15) presenting poly-

morphic beat sequences.

Each patient’s file is segmented into two blocks: the first

one, containing L=20 heartbeats of concurrent ECG and

EGM signals, is used in the training step, and the second

block, with Q=11 beats, is devoted to the synthesis step.

4.2. Results

The objective of this section is twofold: i) to show the

behavior of the two proposed methods, namely the direct

method and the indirect method, and ii) to compare the

performance provided by each method. Note that, for pa-

tients of Type I and Type III, the training dataset and the

synthesis dataset contain heartbeats of the same morpholo-

gies. In the case of patients of Type II, the PVB heartbeats

are not learned (in other words, only the heartbeats of sinus

rhythm are considered in the training dataset).

Figures 1 (a) and (a’) show examples of real surface

ECG (dark line, IReal) and synthesized ECG (gray line,

IRec) for a patient with sinus rhythm (P1) obtained by the

direct method and the indirect method, respectively. The

synthesis errors of the two methods in this case are practi-

cally insignificant. The same behavior is also obtained in

the case of patient P15, with polymorphic beat sequences

(See figures 1 (c) and (c’)). Indeed, all the heartbeats are

well estimated, both for the direct method (figure 1 (c)) and

the indirect method (figure 1 (c’)). Regarding the patient

P13 (with PVB), (figures 1 (b) and (b’)) exhibit that the

two methods provide less reliable estimates for the abnor-

mal beat. However, the results of the two methods could

still be useful in a tele-monitoring context, since the syn-

thesized pathological morphologies are very different from

sinus beats and the ECG wave durations are preserved.

Thus, even if the direct method and the indirect method

are not able to exactly reproduce some beat morphologies,

they could be used to detect the presence of abnormal ECG

beats. In addition, the preservation of the ECG wave du-

rations can be particularly useful to characterize certain

pathologies from synthesized beats.
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Figure 1. Examples of the synthesized ECG (Real surface

ECG: dark line and synthesized ECG: gray line).

In order to compare the quality of the 12-lead ECG syn-

thesis obtained by both methods, we apply them to all the

database and we calculate the correlation coefficient be-

tween real 12-lead ECG and synthesized 12-lead ECG for

each patient and each method. Figures 2 and 3 display the

obtained results for each patient and each ECG channel, re-

spectively. We can observe that the performance of the two

methods, obtained for each patient and each channel, are

equivalent. More precisely, figure 2 shows the very good
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performance of the direct method and the indirect method,

both for the patients with sinus rhythm (Type I) and with

polymorphic beat sequences (Type III). The correlation co-

efficient between the real ECG and the synthesized ECG is

above 0.97 for patients of Type I and lies between [0.86-

0.92] for patients P14 and P15. For patients P11, P12 and

P13 (Type II) the proposed procedures seem to be less ef-

fective in comparison to other patients (correlation coef-

ficient lie between [0.76-0.80]). This result is essentially

due to the fact that P11, P12 and P13 present PVB (which

are not learned), having different morphologies. It is also

interesting to note (see figure 3) that the quality of recon-

struction is independent of a particular ECG channel.
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Figure 2. Correlation coefficient between real ECG and

synthesized ECG, for each patient, using direct method

and indirect method.
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Figure 3. Correlation coefficient between real ECG and

synthesized ECG, for each channel, using direct method

and indirect method.

5. Conclusion

Two methods to synthesize a standard 12-lead ECG

from only two EGM, based on a dynamic TDNN, are pro-

posed in this study. A quantitative comparison, conducted

on a database issued from 15 patients, shows that the per-

formance of both methods is equivalent. However, as re-

ported in Section 3.1., the direct method requires the learn-

ing of 12 transfer functions, whereas the indirect method

only requires 3 transfer functions. The simplicity of the in-

direct method makes it an interesting option for an eventual

integration of a TDNN-based reconstruction module, em-

bedded into an ICD. Both methods show an interesting per-

formance for patients on sinus rhythm (Type I) and patients

with polymorphic beat sequences (Type III). Regarding the

patients of Type II, both methods show limitations on the

reproduction of PVB. However, the synthesized abnormal

morphologies, obtained from both methods, are very dif-

ferent from sinus beats. In addition, the ECG wave dura-

tions of the normal/abnormal beats seem to be preserved,

which is useful for a diagnosis purpose (such as the char-

acterization of a bundle branch block). It should be noted

that, the performance of our procedures do not depend on

the ECG channel to be synthesized. Besides, the proposed

solutions are not restricted to only two EGM channels but

can be generalized to several EGM channels.
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