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Abstract 

In-vivo atherosclerotic plaque composition has been 

currently assessed by means of techniques based on 

spectral analysis of backscattered intravascular 

ultrasonic signals. Conversely, conventional IVUS 

images are based only on amplitude envelope of 

ultrasonic signals, discarding some frequency 

information and, consequently, disabling tissue 

characterization from spectral features as described 

previously. In this work, a computational tool has been 

developed for evaluation of coronary atherosclerotic 

plaque composition, without using of backscattered 

radiofrequency attributes. Textural analysis from 

atheromatous lesions has been combined with pattern 

recognition techniques in order to solve this problem. A 

preliminary test sample with 08 coronary arteries from 5 

different patients, totalizing  regions of interest, resulted 

into an average error-rate of 5,2%. 

1. Introduction 

Histopathological studies have shown an association 

between sudden death from acute coronary syndromes 

and the presence of ruptured plaques [1-3]. A 

comprehensive morphologic classification scheme has 

been developed in order to standardize studies about 

atherosclerotic disease [1, 4]. Thin-Cap Fibroatheroma 

(TCFA) has been described as the most frequent coronary 

ruptured lesions [1, 3, 5, 6]. The definition of TCFA 

assumes a necrotic-core component, located close to 

arterial lumen, separated by a thin fibrotic cap (thickness 

lower than 60mm) [4]. The rupture of this separating 

interface exposes the necrotic content to blood flow, 

initiating the formation of intraluminal thrombus, which 

may occlude the artery – totally or partially –, causing an 

acute coronary syndrome [2]. 

Intravascular Ultrasound (IVUS) has been the current 

gold standard method for in-vivo arterial wall assessment 

[7-9].  Several studies has been using IVUS to assess the 

progression of coronary atherosclerosis [8] and 

therapeutic strategies targeting the coronary disease [7]. 

Virtual Histology (IVUS-VH) is a new image modality, 

based on spectral analysis of backscattered acoustical 

signals before IVUS images formation, which allows in-

vivo plaque composition evaluation [10-12]. VH tissue 

components are divided into four different classes: 

Fibrotic (FT), Fibro-Fatty (FF), Necrotic-Core (NC) and 

Dense Calcium (DC), every one of those represented by a 

different color into VH images, as represented in [10]. 

Conversely, plaque characterization based only on 

IVUS image features according to VH-classification 

scheme has not been developed yet. IVUS has been used 

in several clinical studies in the last decade. If an IVUS 

image-based plaque classifier achieves robust and reliable 

results, innumerable analyses will be performed using 

current available data and images from those related 

studies. One possible application with future clinical 

potential is to assess the evolution of coronary 

atherosclerotic disease from changes on plaque 

composition in serial IVUS examinations. 

In this work, a computational tool has been developed 

for evaluation of coronary atherosclerotic plaque 

composition, without using of backscattered 

radiofrequency attributes. More details of our methods 

and results are described in the following sections. 

2. Methods 

The main objective of the present study was to 

evaluate, in conventional IVUS images, whether plaque 

classification should be performed only by means of 

image features. Our gold standard method for 

composition assessment was IVUS-VH plaque 

classification. 

2.1. Study population 

The present study prospectively included a group of 5 

patients (8 arteries) who underwent to IVUS-VH 

examination. IVUS-VH analyses have been performed by 

ISSN 0276−6574 645 Computers in Cardiology 2009;36:645−648.



 

 

a specialist according to current international standards 

for IVUS analysis. 

The study protocol was approved by the local ethics 

committee and written informed consent was obtained 

from every patient. 

2.2. Image processing tools 

As our main goal is to perform plaque components 

inference based only on intravascular ultrasound image 

features, a computational tool have been developed. For 

this, algorithms have been developed in Java® using the 

ImageJ platform, an open-source image processing 

software which contains a set of classes implementing the 

major image processing techniques [13]. 

The first step was the feature extraction from gray-

scale IVUS images. For training step, we selected regions 

of interest (ROI) to extract textural information and build 

a training group. The ROI’s determination has been 

performed according to correspondent IVUS-VH image, 

splitting it in four different binary masks, each one for 

one plaque component. In these masks, black pixels 

correspond to the background and the white pixels 

correspond to plaque pixels. This way, squared windows 

of white pixels was selected for textural features 

calculation. Three different sizes were tested for those 

centered ROIs: 5x5, 7x7 and 9x9 pixels.  

The second step was the selection of textural attributes 

to compose the feature vector for classification step. Two 

major sets of descriptors have been selected: invariants 

based on Hu moments [14]  and Haralick’s co-occurrence 

matrix features [15, 16]. More details about chosen 

features are available on the following section. 

2.3. Feature extraction 

In order to provide rotational invariance to Haralick’s 

approach, we calculated the co-occurrence matrix for four 

proposed directions in [15, 16], and we have performed 

the addition of these four matrixes. Matrix-based 

parameter estimation was calculated over the summation 

matrix, which is, in thesis, rotation invariant. 

To avoid sparse co-occurrence matrixes, we have 

evaluated different re-quantizations levels for Haralick’s 

parameter estimation. Three additional gray-scale levels 

were tested: 32, 62 and 128. 

Conventional Hu moments, available in Table 1, have 

been set as rotational, translational, and scale invariant, 

however, some experiments performed showed relative 

sensitivity to those aspects, as described in [17]. In 

addition to that, Hu moments have not been invariant to 

affine transforms, for example, multiplication of whole 

image pixels for a numeric constant. These affine 

transforms are associated to images with different 

acquisition gains. To reduce the sensitivity of our method 

related to the previously related effects, we tested two 

different sets of invariants used in handwritten characters 

recognition based in the Unified Moment Invariants 

(UMI), an approach described in [18] . Those sets are 

built using UMI and the following formulations for 

normalized central moments: the Aspect Invariant 

Moments (AIM) and the Higher-Order Scale Invariant 

(HOSI), both defined in [18]. 

 

Table 1: Hu Moments mathematical expressions 
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Table 2: UMI moments mathematical expressions 
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 In AMI mathematical definition, the normalized 

central moments are defined according eq. (1), in the 

other hand, in the HOSI mathematical definition; the 

normalized moments are defined as described in eq. (2). 
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Legend:  pq Central Moments  

In our test, both approaches – AMI and HOSI – have 

shown a potential problem for proposed problem. When 

the ROI pixels had the same value, some moments 

presented were equals to zero, and some mathematical 

inconsistence appeared, leading to not a number (NaN) 

values and infinity values (Inf), which was not desirable 

for our approach. 

In order to solve this problem, a new set of invariants 

were proposed for our group and is described in eq.(3) 

and eq.(4). 
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Legend: i , ,...1 7  i Conventional Hu Moments  

Our proposed set has shown lower sensitivity to 

translation, rotation, scale and affine transforms than 

AMI, HOSI and conventional Hu moments and the 

mathematical inconsistence problem disappeared with 

this approach. This way, the feature vector was composed 

by 22 features: six (06) invariants previously proposed, 

thirteen (13) features based on Haralick’s co-occurrence 

matrix, two (02) coordinates of ROI’s center of mass and 

one (01) feature representing the summation of whole 

ROI’s intensities. 

In order to assess the influence of different acquisition 

conditions for every patient, intensity normalization was 

tested. In few words, with this procedure, the median 

luminal and adventitia intensities are adjusted to be close 

to reference values. For this, eq. (5) describes the 

intensity transformation.  
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Where: 190; 5
ADV LUM

I I  ; ˆ( , )I i j is the measured 

intensity in position ( , )x y ; ˆ :
LUM

I median luminal 

intensity before normalization and ˆ :
ADV

I median 

adventitia intensity before normalization. 

2.4. Pattern classification techniques 

After the feature extraction step, the classification step 

was started. K-nearest neighbors rule (k-nn) [19, 20] have 

been used to assess the classification for every region of 

interest. We defined that seven nearest neighbors have 

been used for the decision step. In addition to this, 

Euclidian Distance and Mahalanobis metric have been 

tested. Matlab® has been chosen as development 

framework for pattern recognition routines. 

To provide more robustness and reliability to our 

results, leave-one-out method was applied for cross-

validation of proposed approach. Once eight arteries were 

available, eight different combinations of training and test 

sets have been built by means of leave-one-artery-out 

procedure. 

3. Results 

Firstly, we have shown the distribution of the number 

of ROIs according to plaque composition for every 

window size. In table 3, the quantity of fibrotic ROIs was 

extremely higher than the other components. As ROI 

dimensions were raised, the number of ROIs matching 

the selection criteria has decreased significantly. 

 

Table 3: Regions of interest distribution according to 

plaque composition for every window size  

ROI 

Size 

Number of ROIs per component 
Total 

DC NC FF FT 

5x5 7643 6962 8794 73093 96492 

7x7 3351 1821 2517 31376 39065 

9x9 1063 312 723 13252 15350 

Legend: DC – Dense-Calcium; NC –Necrotic-Core; FF –

Fibro-Fatty; FT – Fibrotic Tissue. 

 

For limited space reasons, the tables containing the 

performance analysis for every scheme – window size, 

gray-levels re-quantization, intensity normalization and 

k-nn metric – were suppressed in this paper. 

In the four classes scheme, the best configuration has 

provided the following average cross-validation error 

rates per component: (DC) 2.35%; (NC) 20.51%; (FF) 

92.22%; (FT) 0.04%, which led to an average error rate 

of 5.2%, considering the plaque components’ 

distribution. This configuration was achieved using 

Mahalanobis distance, 9x9 ROI length and normalized 

images with 256 gray-scale levels.  

Those results have demonstrated the inability of our 

approach to discriminate fibrotic from fibro-fatty tissues. 

However, if the three classes’ scheme was possible – DC, 

NC and FF+FT – maybe TCFA plaques identification 

should be feasible in the future.  

In face of that, we assessed the performance of our 

classification process considering the described three 

classes’ scheme. Our findings were: (DC) 2.35%; (NC) 

20.51% e (FF+FT) 0.04% and a total average cross-

validation error of 0.59%. 

4. Discussion and conclusions 

According to our findings, plaque characterization into 

IVUS-VH four classes scheme is not possible using the 

related methodology. Our method was not able to 

differentiate fibrotic from fibro-fatty tissue. There are 
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some possible reasons for these results, however, depth 

investigation become necessary to achieve feasible and 

reliable conclusions about the possibility or not to 

classify plaque based only on IVUS images’ features.  

In the three classes’ scheme, without discrimination 

between fibro-fatty and fibrotic tissues, some 

encouraging results have been found. Despite NC average 

error rate has been around 20%, we believe that those 

results should be improved with the addition of new 

textural features. In the first moment, our choice was 

extremely severe about invariance properties. Our next 

step is to utilize multiresolution analysis with wavelet 

transform and assess the effectiveness of our 

normalization procedure to infer which parameters are 

leading to the confusion between FT and FF components. 

To finalize, this work has shown that plaque 

composition estimation based only in image features 

should be possible. However, some improvements have 

been made necessary, especially for reducing NC error 

rate and for discriminating FF and FT tissue components. 

Further efforts will be realized in order to accomplish the 

promising objective of image-based atherosclerotic 

plaque characterization. Advances in this area should lead 

the knowledge about atherosclerotic disease to a new 

paradigm, once IVUS has become an indispensible tool 

for atherosclerosis investigation context. 
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