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Abstract 

A novel electrophysiological cardiac model is 

introduced in this paper. The proposed cardiac model 

considers six key regions that characterize the cardiac 

electrical activity. This allows the model to solve the 

forward and inverse electrocardiology problems in near 

real time. The proposed cardiac model is used as a 

basis for two near real time clinical diagnostic 

applications. The first is the detection of myocardial 

ischemia. The second is the localization of myocardial 

infarction. These diagnostic methods use the proposed 

forward and inverse problem solutions and machine 

learning approaches to diagnose automatically, 

noninvasively, and accurately these two serious heart 

conditions. Moreover, the proposed diagnostic methods 

have high true positive and negative accuracies suitable 

to be used in clinical expert systems. The accuracies for 

the ischemia detection and infarction localization 

methods are 91% and 68.57%, respectively. 

1. Introduction 

Most cardiac modeling methods focus on simulating 

the chemical dynamics of the cardiac cells using 

nonlinear coupled differential equations. To set up the 

forward and inverse problems, these methods 

simultaneously model more than 100,000 cells or 

attempt to solve Maxwell’s equations using numerical 

methods such as finite element and finite difference 

techniques[1, 2]. This complexity requires high 

computational time. Additionally, such methods require 

a geometrical representation of the heart and body torso 

for each individual.  Both the computational complexity 

and dependency on the cardiac and body geometry 

makes them inadequate for developing near real time 

diagnostic methods. 

Current literature divides the cardiac modeling 

problem into three problems: modeling the electrical 

activity of the cells and tissue and solving the inverse or 

forward problems. Most of the current cardiac cell 

models are based on the Hodgkin and Huxley model 

including the Lou-Rudy models, Noble models, and all 

those who followed. Moreover, current modeling 

approaches that solve the cardiac modeling problem 

require having a geometric model of the heart and torso 

of the patient and a model of the cells and tissue to solve 

for the forward and inverse problems. Generally, 

Lagrangian interpolation in one-, two-, and three-

dimensions, and cubic Hermite basis functions are used 

in geometric modeling[3].  

In this work, we take a different approach in 

developing patient independent solutions for the 

forward and inverse electrocardiology problems in 

comparison to the traditional solutions. While the 

problem addressed in this work is still the modeling of 

the cardiac electrical system, the modeling occurs at a 

higher physiological level. Here, the cardiac modeling 

problem is divided into two sub-problems. The first is to 

model the action potentials of the cardiac regions. The 

second is to define the interaction between the cardiac 

electrical subsystems and their measured output at the 

body surface.  

The approach presented in this paper models the 

generation of the ECG signal using a solution for the 

inverse problem and forward problem. The modeling 

approach is based on cardiac electrophysiology, where 

the ECG signal is generated from the modeling of the 

sinoatrial (SA) node, atrioventricular AV node, Bundle 

branches (Bb), Purkinje fibers (Pf), and left and right 

ventricles (LV and RV) walls. The electrical activity of 

each of these components of the heart is estimated by 

the difference of two sigmoid functions. The model has 

the ability to characterize the P wave, PR segment 

changes, QRS complex, ST segment changes, and T 

wave. 

Two clinical applications are examined using the 

automatic diagnostic methods presented here.  The first 

is the detection of myocardial ischemia. The second is 

the localization of myocardial infarction.  

The importance of the two diagnostic methods can be 

seen in the potential impact on early screening of 

myocardial ischemia and on quickly identifying the 

location of myocardial infarction. As noted by the 

World Health Organization, ischemic heart disease is 

the leading cause of death in the world with almost 7.2 

million fatalities per year [4]. The proposed diagnostic 

method can be used in the early screening of myocardial 
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ischemia. Early screening of myocardial ischemia is 

proven to help prevent heart attacks [5].  

2. Data sets 

Two datasets are used in this work:  

1. The Long-Term ST Database consisting of 86 

digitized long-term (Holter) ECG tape recordings, 

mostly from subjects who had transient myocardial 

ischemia. This dataset is used for the detection of 

myocardial ischemia. 

2. The PTB Diagnostic ECG Database containing 549 

records from 294 subjects. The records are digitized 

at 1 KHz per signal. Most of the records are from 

patients who had myocardial infarction. This 

dataset is used for the localization of infarcts in the 

4 cardiac regions 

A ten-fold cross validation is used to validate the 

diagnostic and localization algorithms. The ten fold 

cross validation is described as follows: Divide data into 

10 set of size n/10, called folds, train on 9 sets and test 

on 1 set, repeat the process 10 times and store the 

diagnostic results, and finally combine the results and 

calculate the overall accuracy. The ten fold cross 

validation test ensures that the training and testing sets 

are patient independent. 

3. Methods 

The motivation for this modeling approach starts 

from the observation of the electric potential of a 

cardiac cell and specific groups of cells during the 

cardiac cycle. To further clarify, consider the hypothesis 

that the heart can be represented by a vector of N 

electrical regions (make the equation font identical to 

the rest of the paper. It looks to big. ) 

[ ]1 2 ... NHeart region region region=     (1) 

In this case, the cardiac modeling sub-problem is to 

determine the function φ  that represents the action 

potentials at the cardiac regions ( )1 ,regionφ  

( )2 ,regionφ  ( )..., nregionφ . The aim of the 

second sub-problem is to determine the 

functions f and
1f −
 described in equations (2) and (3), 

respectively:  

( ) ( ) ( )( )1 2 ... nf region region region ECGφ φ φ =   ,      (2) 

( ) ( ) ( ) ( )1

1 2 ... nregion region region f ECGφ φ φ −=   .      (3) 

Equation (2) describes the forward problem as the 

function, f , that generates the ECG from the electrical 

activity at the cardiac regions 

( )1 2, ,..., nregion region region . Equation (3) represents 

the inverse problem as the function
1f −
 that estimates 

the cardiac electrical activity from measured ECGs.  

One of the difficulties of the cardiac modeling 

problem is that as stated in (2) and (3), the solution is 

not uniquely defined. This is seen in (2) and (3) as the 

number of unknown parameters is greater than that of 

known parameters. This work addresses this difficulty 

by considering a finite number of regions, constraining 

the activity of each region to the cardiac 

electrophysiology, and using least squares optimization. 

We have found the cardiac electrical cycle of the 

selected regions is well modeled by the difference of 

two sigmoids, which is defined by  

( ) ( ) ( )1 1 2 2
1 1 2 2

1 1
, , , , ,

1 1
a t c a t c

t a c a c k k
e e

φ
− −

 
= − 

− − 
     (4) 

where k represents the magnitude of the wave, a1 and a2 

control the rising slope, and c1 and c2 control the 

translation in the direction of the t axis as shown in 

Figure 1. 

Figure 1: Proposed heart cell activity 

 

By representing the delay of the region activity arriving 

at the positive and negative electrodes of the leads as 

iφ +
and iφ −

, where  

 ( )1 1 1 2 2 2, , , , ,t a c a c kφ φ δ δ+ + += + +    (5) 

 ( )1 1 1 2 2 2, , , , ,t a c a c kφ φ δ δ− − −= + + ,  (6) 

where 1δ +
and 1δ −

 represent the activation delay at the 

positive and negative electrodes, respectively. 

The 2δ +
and 2δ −

represent the delay of the deactivation 

timing at the positive and negative electrodes, 

respectively. 

 

The following sections describe the forward and inverse 

problem solutions, and the clinical applications of this 

model. 

3.1. Forward problem solution 

By summing the potential difference of each region’s 

activity at the positive and negative terminals of each 
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lead, the forward problem solution, i.e. the ECG signal 

at any lead are generated as: 

( )
[ ], , , , ,

ˆ
ECG i i

i SA AV Bb Pf Lv Rv

f φ φ+ −

∈

= −∑ ,               (7) 

where 
i

φ
+

and
i

φ
−

represent the cell group activity at the 

positive and negative electrodes for the SA node, AV 

node, bundle branches (Bb), Purkinje fibers (Pf), and 

left and right ventricles (Lv and Rv). ˆ
ECG

f
 

is the 

generated ECG signal. 

3.2. Inverse problem solution 

In order to determine the model parameters and solve 

the inverse problem, a constrained least squared 

minimization technique, lsqcurvefit provided by Matlab 

[6], is applied to the sum square error of the estimated 

ECG of (2) and actual ECG signals: 

 ( )
2

ˆ
ECG

signal

Error ECG f= −∑ ,               (8) 

Since the approach is applied to a single beat at a 

time, the beats are separated automatically using 

ECGPUWAVE [7]. The beginning and end of the atrial 

and ventricular activity are also generated from the 

ECGPUWAVE method. 

In order to have an accurate match between the 

modeled and actual ECG signal, a template model with 

known parameter is used as an initial condition. The 

signal is matched with the direction of the R peak and 

the highest cross-correlation point between the two 

signals is chosen.  

3.3. Ischemia detection 

The proposed approach utilizes the decision tree 

training algorithm C4.5 [8] to generate a decision tree 

that classifies the condition of each beat. The estimated 

ECM parameters and the first fifty principle component 

analysis (PCA) components of the trimmed ECG signal 

starting from the R peak until the end of the T wave are 

used as attributes in the training process. The classes 

corresponding to the samples are ischemic or healthy. 

3.4. Infarction localization 

Similar to the ischemia detection method, a C4.5 

decision tree is trained using the model parameters and 

the first fifty PCA components of the trimmed ECG 

signal starting from the R peak until the end of the T 

wave. The classification method is applied to leads: I, II, 

III, aVL, aVF, V1, V2, …, V6 detecting if the ECG 

measured at those leads shows signs of infarctions. The 

results of the classification is either 1 for infarcted, or 0 

for healthy. An automated method is used to localize 

infarcts based on the Selvester criteria [9]: 

 

 

 

 

Table 1: ECG changes seen in acute myocardial 

infarction. 

Area Changes and leads 

Anterior V2- V4 

Septal V1 -V2 

Lateral I, aVL, and V5, and V6 

Inferior II, III, and aVF 

4. Results 

The proposed model is applied to signals from the 

LTST and PTB diagnostics database. The average error 

between the model generated ECG and an actual ECG is 

calculated to be less than 5%. The accuracies for the 

myocardial ischemia and localization of myocardial 

infarction are 91% and 68.57%, respectively. 

4.1. ECG generation accuracy 

The modelling approach is applied to healthy, 

ischemic, and infracted beats from the PTB diagnotics 

database and the LT-ST dabase. Figure 2 shows a 

randomly selected estimated signal from the LT-ST 

database. The percentage error for this signal was 

calculated to be less than 4% of the original signal, 

which is negligible in clinical measurements.This error 

is considered as the noise in the signal. 

 
Figure 2: Original healthy and estimated clean signal. 

 
Figure 3: Actual error between the original and clean 
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signal 

4.2. Ischemia detection experiment 

The application of the model parameters and the 

PCA components of the signal as features for a C4.5 

decision tree classifier yielded accuracy of 91.62% with 

sensitivity of 94.89% and sensitivity of 75.66%. The 

confusion matrix for the proposed approach can be seen 

in: 

 

Table 2: Confusion matrix for the ischemia diagnostic 

method. 

Classified as 

 Ischemic Healthy 

Ischemic 16,035 828 

Healthy 892 2,772 

4.3. Infarction localization experiment 

This section presents the results for the proposed 

infarction localization results. Similar to the ischemia 

detection experiment, a ten fold cross validation test is 

applied to the PTB diagnostics database. The results of 

applying the infarction localization approach to the PTB 

diagnostics database yielded an accuracy of 68.57%. 

The proposed ECM-PCA-Localizer is compared to the 

current best infarction localization technique, 

RPS/GMM approach, presented at the 

physionet/computers in cardiology 2007 in [10] as 

shown in: 

 

Table 3: Comparison between the proposed and 

RPS/GMM method. 

Approach Accuracy 

Proposed 68.57% 

RPS/GMM 58.74% 

5. Discussion and conclusions 

As a summary, the results for the proposed ischemia 

detection and the infarction localization methods 

applied to the LT-ST and PTB diagnostics databases, 

respectively. Both approaches show excellent results 

when diagnosing ischemic and healthy beats, and 

localizing infarcts. The proposed diagnostic and 

localization methods use the ECM parameters obtained 

from the inverse problem solution.  

The importance in the proposed model, ECM, is that 

it can be related back to the heart’s physical and 

electrical activity. It can be seen that the parameters of 

the ECM can be used in the detection of ischemic and 

healthy heart beats. This is due to the fact that the model 

parameters captured the information regarding the 

cardiac regions and their effect on the ECG waves and 

segments, such as slope, interval duration, magnitude 

and segment’s variation. Although as single lead model 

is presented, this model has been extended to account 

for multiple leads, with similar results.  

The training processes for these diagnostic 

techniques are performed offline. The 

classification/diagnostic process is performed online. 

The waiting time for this diagnostic method is the 

inverse problem solution, which as presented in the 

previous chapter takes 10s. Therefore, these diagnostic 

methods can run in near real time. 
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