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Abstract 

Wavelet bicoherence (WB) provides insight into 

nonlinear interactions and can provide information about 

interacting oscillations in the cardiovascular system, 

especially in the very high frequency (VHF) band. We 

suggest a new normalization for the WB estimator which 

enables a combined threshold criteria reducing false 

positive error from 5% to below 1%. Alternatively, we 

suggest a modified wavelet bicoherence (MWB) based on 

frequency shifts using Hilbert transform and a mixer 

which enables an optimal time resolution. Simulations 

were performed to assess the threshold values and to 

support the usability of the proposed methods. 

Implementation on heart rate signals of heart transplant 

(HT) and normal subjects indicated improved sensitivity 

as compared to Fourier based bicoherence. Significant 

peaks were found in the VHF band in 60% of the HT 

group and, for the first time, in normal subjects, in 40% 

of the control group. 

1. Introduction 

The reference to the existence of very high frequency 

(VHF) (>0.4 Hz) peaks in HR and BP signals focused 

mainly on research of heart transplant patients (HT) [1;2] 

and in normalizations of spectral power [3]. Nonlinear 

analysis is needed to help map the origin of the VHF 

peaks. Wavelet bicoherence (WB) has been introduced as 

a technique for revealing non linear modulations among 

interacting noisy oscillators. It was also shown to have 

advantages over the traditional Fourier-based bicoherence 

estimates [4] and to be useful in the analysis of 

multivariate dynamic signals of the cardiovascular system 

[5]. The following work suggests practical tools for the 

use of WB in cardiovascular analysis including combined 

statistical criteria for reduction of noisy peaks and 

modified wavelet bicoherence estimates which could 

enable dynamic estimation of time- frequency behavior 

of a specific bifrequency peak.  

Firstly, mathematical formulation of two 

complementary methods is presented together with 

threshold analysis. Secondly, simulated data is used for 

the assessment of actual threshold values and a 

demonstration of the method is performed on test signals. 

Finally, WB is calculated for real HR signals of heart 

transplant (HT) and normal subjects.  

2. Methods 

2.1. Mathematical overview 

Wavelet Transform (WT) decomposes a time series 

signal into a time – scale plane. The continuous wavelet 

function based on the Morlet wavelet function consists of 

a plane wave modulated by a Gaussian. 
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where t and s are time and  scale and 0ω  is the Morlet 

coefficient. The continuous wavelet transform 

(CWT) is defined as the convolution of a scaled 

parent wavelet function (1) with the analyzed 

function g (t).  

( , ) ( ) ( )g

sW s g t t dtτ τ= Ψ −∫         (2) 

  In the case of Morlet wavelet the scale can be 

transformed to frequency through the Fourier wavelength 

[6]. 

The wavelet power spectrum (autospectral density) 

estimator of g(t) is defined in the naïve way 

( , ) ( , ) ( , )gg g gW t f W t f W t f∗=   (3) 

Where f is the frequency value derived from the scale. 

Degeneration of the time domain is performed by 

averaging over the time epoch T 
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The wavelet bispectrum estimator for frequencies f1 

and f2 is defined as [4] 

*
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With phase defined using the angles ∠  as  

1 2 1 2 1 2( , , ) ( , ) ( , ) ( , )gg g g gt f f W t f W t f W t f fφ = ∠ + ∠ − ∠ +  (6) 

  

The bispectrum was normalized by the estimated 

degenerate spectrum W(f) at the corresponding 

frequencies to give the wavelet bicoherence (WB) . 
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The chosen normalization does not limit the estimator 

to the [0,1] as previously [4] but corresponds with 

statistical analysis that enables robust threshold analysis 

[1]. 

An alternative approach for assessing nonlinear 

modulation is to perform frequency up-conversion to 

align the two frequencies of interest and apply coherence 

analysis. This approach requires prior knowledge of the 

frequencies to be analyzed. For frequencies f1 and f2 (f1 < 

f2) the shift of signal x would be 

  

1 1( ) ( ) cos(2 ) ( ) sin(2 )shiftx t x t f t h t f tπ π= ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅  (8) 

 

Where h(t) is the Hilbert transform of x(t) [7]. 

The previously nonlinear relationship is now assessed 

by the linear relationship between the signal and its shift 

using the wavelet coherence transform (WTC) [8] which 

yields a modified wavelet bicoherence estimator (MWB). 
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Where < > is a smoothing operator [8]. The frequency 

region of interest for the analysis would be in the vicinity 

of f1 + f2 area. 

2.2. Threshold analysis 

Bicoherence magnitude is an indication of the 

nonlinear coupling between two frequencies. However, 

two completely independent processes are likely to 

produce nonzero values. Therefore, before considering 

the 2D map of bicoherence, one must first be able to 

differentiate between spurious and genuine peaks. In 

order to identify genuine peaks, we defined a null 

hypothesis that the process reflects a Gaussian noise.  

Peaks which significantly differ from a Gaussian process 

would be considered as "true" bicoherence peaks. The 

analysis of bicoherence of Gaussian process was 

previously performed for the Welch periodogram method 

adapted  to WB [1]. 

Following this, we defined three distinct thresholds for 

testing bicoherence significance, which, when used in 

conjunction, have the potential to reduce false positive 

errors. 

Since the real and imaginary parts of the bicoherence 

are independent variables, Bicoherence magnitude |B|2 of 

random Gaussian processes is expected to distribute as χ2 

with two degrees of freedom  
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Where x is the bicoherence magnitude and ζ is a 

scaling factor dependent on the integrated time epoch. 

Thus, the first threshold defines the magnitude 

threshold for significance level p as  

2
ln(1 )magT p

ζ
= − −    (11) 

 The biphase vector is defined as  

 

2 2( cos ) ( sin )t t
T T

φ φΓ = +∫ ∫   (12) 

Where Γ is expected to follow Rayleigh statistics with 

parameter ζΓ 
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which defines the second threshold for phase as 

2ln(1 )
phase

p
T

ζ Γ

− −
= −    (14) 

The third threshold is the variance of phase (VOP) 

21
( ( ) )

T
VOP t

T
φ φ= −∫    (15) 

According to the central limit theorem, VOP is 

expected to follow normal distribution with mean µ and 

std σ. VOP threshold is obtained by numerically solving 

the following  
2
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Unlike the magnitude and phase threshold, high VOP 

indicates random Gaussian process. Therefore, p=0.05 is 

selected for calculating significant TVOP. All bifrequency 

points having VOP below TVOP would be considered as 

"true" peaks. For the magnitude and phase threshold, 

p=0.95 is selected and all peaks with magnitude or  Γ 
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above the corresponding threshold will reflect true 

nonlinear modulation. 

Since vicinal wavelet times and scales are not 

uncorrelated, different points in the time frequency map 

of the wavelet transform are not independent.  Therefore, 

the abovementioned theoretical distributions parameters 

cannot be analytically estimated.  

2.3. Simulations and test signals 

Numerical simulation was performed in order to asses 

the distributions parameters (ζ, ζΓ, µ and σ). 10,000 

realizations of a normally-distributed white noise process 

with zero mean and unitary variance were simulated and 

used to calculate the bicoherence magnitude, phase and 

VOP for each bifrequency point from 0.1 to 2 Hz in steps 

of 0.1. In order to estimate the distribution parameter, the 

accumulated realizations of each bifrequency point were 

fitted to the appropriate distribution. This was repeated 

for time epochs of 100, 200, 400 and 800 sec.  

A test signal for illustrating the bicoherence 

estimator's behavior was defined as a simple modulation 

between two oscillators of 0.2 and 0.5 Hz lasting 800 sec. 

  

( ) (0.2 ) (0.5 ) (0.2 ) (0.5 ) ( )x t A t A t A t A t N t= ⋅ + ⋅ + ⋅ ⋅ ⋅ + (17) 

 

Where A(f⋅t)=sin(2πf⋅t), N(t) is added Gaussian noise 

and t is a discrete time vector with 0.1 sec resolution. 

2.4. Human subjects 

We considered two groups of subjects from earlier 

studies [1;2]: 17 heart transplant (HT) patients (age 

53±11 years); and 16 normal subjects (age 41±6 years) 

acting as a control group. Briefly, the experimental 

protocol included 45 min of supine rest followed by a 10 

sec period of change in posture, to the standing position. 

The recording included ECG, non-invasive arterial blood 

pressure at the finger (Finapress; Ohmeda Corporation) 

and respiratory impedance belts. Pre-analysis processing 

produced HR, BP and respiratory signals at a sampling 

frequency of 10 Hz. Our work focused on the analysis of 

HR signals. Earlier studies reported bicoherence peaks in 

some of the HR signals in the HT group but not in the 

control group. Bicoherence analysis was based on the 

Welch periodogram based on the Fourier transform [1]. 

We have repeated the analysis using WB and MWB. 

3. Results 

All simulations have shown a good fit to theory (<5% 

error) (Fig 1). The threshold levels for each method were 

highly dependent on the bifrequency point and on the 

length of the analyzed epoch, but their exact relationship 

was left beyond the scope of this manuscript. WB 

bifrequency maps for different threshold criteria captured 

bicoherence in the bifrequency points (0,2,0.3) Hz, which 

represent interaction on f1 - f2 and (0.2,0.5) Hz which 

represent interaction on f1 + f2 . Each criterion had about 

5% artifactual peaks, as expected. When the three 

thresholds were used in conjunction, there was <1% 

artifactual peaks since there was almost no correlation 

between the different criteria (Fig 2).    

MWB time frequency map exhibits significant 

magnitude power on 0.7 and 0.5 Hz (slightly merged 

together) and on 0.2 Hz. Traces of significant magnitude 

were also found in 0.3 Hz (Fig 3). 

 

 

Fig 1: Example of distributions of Gaussian noise process 

and fit to the theoretical distribution for (a) Bicohrence 

magnitude (b) biphase vector and (c) VOP. Vertical lines 

represent threshold values (p=0.95 for magnitude and 

phase and p=0.05 for VOP). *Number of events is 

normalized. 

Examination of bicoherence maps using the joint 

threshold criteria in the range of 0.1-1 Hz revealed 

significant multiple peaks in 60% of the HT group and 

40% of the control group (. The dark contoured areas are 

above the significance level. 

Fig 4). 

4. Discussion and conclusions 

We presented a WB estimator with different 

normalization which enables the use of combined 

threshold criteria with a reduced false positive error as 

demonstrated on a test signal.  The MWB estimator offers 

a unique approach for the estimation of nonlinear 

modulation with the advantage of preferable time 

resolution optimised to the sum of the two participating 

frequencies. MWB enables the analysis of a specific 

bifrequency point and therefore has the potential to be a 

complementary tool to the more standard bicoherence 

analysis as the WB estimator. Estimation of bicoherence 

for HT patients reproduced similar results to performed 
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analysis based on Welch periodogram [1]. In addition, 

significant peaks were identified on normal patients for 

the first time, suggesting that WB out-performs 

conventional bicoherence estimators in sensitivity. 

Fig 2: bicoherence maps for the test signal (17). Contour 

areas manifest significant areas of (a) intersection of all 

thresholds (b) magnitude threshold, (c) phase threshold 

and (d) VOP threshold. 

Fig 3: MWB map of the test signal (17) for 0.2 Hz shift. 

The dark contoured areas are above the significance 

level. 

Fig 4: Typical example for (a) HR power spectrum of 

normal subject with significant bicoherence peaks (c). (b) 

HR power spectrum of an HT subject with significant 

bicoherence peaks (d). 
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