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Abstract

Quadratic time-frequency (TF) distributions have an ex-

cellent joint TF resolution, but their applicability is lim-

ited by the presence of interferences. In this communi-

cation, a methodology for robustly estimating TF coher-

ence (TFC), based on signal-dependent smoothing of the

Wigner Ville distribution, is shown to provide a reliable

continuous quantification of cardiovascular interactions

during non stationary conditions. Bias, standard deviation

and tracking capability of the TFC estimator have been

quantified in different physiological contexts. Linear cou-

pling between HRV and SPV during tilting has been as-

sessed. It is observed that orthostatic stress provokes a

significant increase (p ≤0.02) of TFC in both LF and HF

range.

1. Introduction

Spectral coherence has been widely applied to quan-

tify the strength of linear relationship between two signals.

This measure, being defined in the frequency domain, can

not assess the time evolution of the coupling and it is not

appropriate for studying non stationary signals. To assess

the time evolution of linear coupling an extension of spec-

tral coherence in time-frequency (TF) domain is necessary.

Thanks to their excellent joint TF resolution, quadratic TF

distributions (QTFD) represent a very powerful tool for

studying non stationary signals, and they have been widely

applied to the assessment of autonomic nervous modula-

tion [1]. Theoretical properties of TF coherence (TFC) de-

fined using QTFD have been first described in [2], but, to

our knowledge, it has never been used in biomedical appli-

cation. It is defined as:

γ(t, f ) =
C1,2(t, f )C*

1,2
(t, f )

C1(t, f )C2(t, f )
(1)

where C1,2(t, f ) is the cross TF spectrum and C1(t, f ) and

C2(t, f ) are the QTFD of signals x1(t) and x2(t), respec-

tively. The unavoidable presence of interference terms

(ITs), whose geometry depends on the TF structure of the

signals, is the main problem for the definition of a consis-

tent TFC estimator, which should be one (zero) for per-

fect (lack of) linear coupling, based on QTFD. The main

purpose of this communication is to present a consistent

estimator of TFC, based on signal-dependent QTFD and

bounded in TF regions of interest. To evaluate the esti-

mator accuracy, bias, standard deviation and tracking ca-

pability are evaluated through simulations involving non

stationary time series which mimic real autonomic signals

with known and controlled theoretical coupling. Real data

application aiming at monitoring the autonomic response

to orthostatic stress is also presented. The time evolution

of the coupling between heart rate variability (HRV) and

systolic pressure variability (SPV) has been continuously

estimated before, during and after upright tilt testing in 15

healthy subjects, allowing to track the dynamics involved

in autonomic regulation.

2. Methodology and materials

2.1. Quadratic TF distributions

In this work, a smoothed version of the Wigner Ville dis-

tribution (WVD) is used in order to reduce ITs. Smoothing

is performed as a 2D convolution between the WVD and

a 2D kernel (defined in TF plane). These QTFD can be

interpreted as the 2D Fourier transform of a weighted ver-

sion of the Ambiguity Function (AF) of the signal to be

analyzed [3]. The cross-TF spectrum can be defined as:

C1,2(t, f ;φ)=W1,2(t, f )⊗φ(t, f )=Fτ→ f
ν→t

{A1,2(ν ,τ)Φ(ν ,τ)}

A1,2(ν ,τ) = Ft→ν

{

x1(t +
τ

2
)x*

2
(t −

τ

2
)
}

(2)

Φ(ν ,τ) = F t→ν
f→τ

{φ(t, f )}

where ⊗ is the 2D convolution on t and f , Ft→ν
f → τ

is the 2D

Fourier Transform operator, used to pass from TF domain

to AF domain, and A1,2(ν ,τ) is the cross-AF of signals x1(t)
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and x2(t). The weighting (smoothing) function Φ(ν ,τ)
(φ(t, f )) performs as a 2D low pass filter which should be

tuned in order to find the better trade-off between ITs sup-

pression and joint TF resolution or, dually, between cross-

components suppression and auto-terms concentration (in

AF domain). Here, an elliptical exponential kernel, able to

automatically adjusts to the TF structure of the signal, is

used:

Φ(ν ,τ;ν0,τ0,λ ) = exp

{

−π

[(

ν

ν0

)

2

+

(

τ

τ0

)

2
]2λ

}

(3)

The kernel’s iso-contours are ellipsis, ν0 and τ0 affect the

length of the axes (the bandwidth of the 2D low pass filter)

whereas λ sets its roll off.

2.2. Signal-dependent smoothing

Signals affected by the autonomic modulation may be

modeled as the sum of complex exponentials showing both

amplitude (AM) and frequency (FM) modulation, embed-

ded in noise. In this study two exponentials are considered

to model an AM LF and a AM-FM HF components:

x(t) = ALF(t)e
iφLF(t) +AHF(t)e

iφHF(t) +ξ (t) (4)

where instantaneous frequency is F(t) = (dφ(t)/dt)/(2π).
The QTFD of these kinds of signals are expected to present

both outer and inner ITs [4]. In order to suppress outer ITs,

which mainly oscillate in time direction with a frequency

which locally depends on the frequency lag νi = FHF −FLF,

the kernel should be able to filter out all ν > νi,min, where

νi,min corresponds to the slowest ITs. To obtain νi,min, the es-

timation of FLF and FHF(t) is required. A direct or indirect

estimation of respiratory rate can be used for approximat-

ing FHF(t). For FLF detection, which in the AF results to

be concentrated along a line, the Hough Transform (HT)

is applied to |A(ν ,τ)|. Due to the hermitian symmetry of

the AF, HT can be performed just on (ν ,τ) > 0 resulting

faster than in TF domain. The parameter ν0 in (3) is fixed

imposing that Φ(νi,min,0;ν0,τ0,λ ) = k << 1, and:

ν0 = νi,min

(

−log(k)

π

)

- 1
4λ

(5)

In order to find a τ0, which mainly affects frequency

smoothing, which provides a good compromise between

ITs suppression (TFC consistency) and TF resolution, an

iterative process is proposed. The parameter τ0 is gradu-

ally reduced (increasing smoothing) until γ(t, f ) achieves

full consistency in the TF region of interest. A comprehen-

sive example is shown in Fig 1. Figures 1a-1b represent the

case of insufficient smoothing. Outer ITs are still present

at midway between the two components and, as expected,

they are higher where the two signal spectral components

Figure 1. Left: auto TF spectrum Cx(t, f ); x(t) compo-

nents are described in (4) and SNR=5dB; Right: Cx(t0, f ),
with t0 marked by a dotted line in the left panels.

Figure 2. simulation: components of x(t)

are closer. In Fig. 1c -1d the TF map computed with the

optimized ν0 is shown. It is free from outer ITs but not

from inner ones (see Fig. 1d around 0.6 Hz). Finally, in

Fig. 1e-1f, the τ0 which makes TFC consistent is used.

2.3. Time-Frequency region of interest

The restriction of the TF support of γ(t, f ) to a region

of interest is justified by the desire of finding a good com-

promise between TF resolution and TFC consistency (full

suppression of ITs). The TF region of interest is then de-

fined as the region Ω(t, f ) where

∀t, C(t, f ) > a ·max
f

[C(t, f )] (6)

with a <1 and Ω(t, f ) = Ωx(t, f )∩Ωy(t, f ). From γ(t, f ),
defined in Ω(t, f ), the band coherence γB(t)(t) is extracted

by averaging in a TV frequency band B(t). In addition,

a mean spectral coherence γ( f ) (generally different from

traditional spectral coherence) is retrieved averaging TFC

on time.

2.4. Simulation to assess accuracy

The bias, standard deviation and tracking capability of

band coherence estimation have been assessed by means

of synthetic signals characterized by known and controlled

682



theoretical coupling. Pairs of signals [x1(t),x2(t)] are cre-

ated adding uncorrelated noises to an original signal x(t):
x1(t) = x(t) + ξ1(t); x2(t) = x(t) + ξ2(t), where ξi(t) =
σi(t)ηi(t), and ηi(t), with i=[1,2], are two zero mean

white gaussian noises of variance σ 2

1
(t) and σ 2

2
(t), respec-

tively. Imposing σ1(t)=σ2(t)=σ(t), theoretical TFC is de-

rived from (1):

γ0(t, f ) =
C2

x
(t, f )

C2
x
(t, f )+2Cx(t, f )Cξ(t, f ;σ)+C2

ξ(t, f ;σ)
(7)

where Cx(t, f ) is the QTFD of x(t) and Cξ(t, f ;σ) is the

QTFD of ξ1(t) and ξ2(t). The σ(t) corresponding to a

given theoretical band coherence γ0,B(t), where B(t) is the

spectral band of interest, have been obtained by properly

integrating (7). Specific situations, aiming at evaluating

the performance of the estimator in different physiological

contexts, have been modeled using (4):

I) γ0,B(t) is constant over time: a) x(t) is a white noise.

b) x(t) mimics a respiratory signal during stress testing:

components are described in Fig. 2 by continuous lines.

c) x(t) mimics an AM-FM HRV signal during stress test-

ing: components are described in Fig. 2. Two hundred

pairs [x1(t), x2(t)] have been created, for each theoretical

coherence level, from 0.1 to 0.95 in steps of 0.05. The

bias is computed as the difference between the group av-

erage of the mean band coherence γ̄B (computed, for every

couple, over time) and the corresponding theoretical γ0,B.

Variability is assessed by estimating the group average of

the standard deviation of γ̄B.

II) γ0,B(t) is time-varying, x(t) is of type Ic (see Fig. 2):

three different time evolutions of γ0,B(t) (a, b and c) are

modeled and described by gray line in Fig. 4. In this cases,

1000 pairs [x1(t), x2(t)] have been created and γB(t) is esti-

mated in mean and standard deviation over all realizations.

The Simulation parameters are summarized in Table 1.

Note that when x(t) is a white noise (case Ia), γB(t) rep-

resents a global (not localized in frequency) estimation,

while in the other cases a localized band coherence estima-

tion is performed. FHF(t) is included in the kernel design to

estimate ν0. Parameter a, λ and k are 0.01, 0.25 and 0.002

respectively.

Table 1. simulation parameters

Ia Ib Ic II

Type T-inv T-inv T-inv TV

x(t) η(t) resp HRV HRV

B(t) [Hz] 2 FHF(t)±0.075 FHF(t)±0.05 FHF(t)±0.05

2.5. Real data application

Real data application aims at tracking the autonomic re-

sponse to orthostatic stress by estimating the TFC between

HRV and SPV during tilt testing. Fifteen healthy subjects

were involved in the test, consisting in 4 minutes of supine

position (T1), five minutes of tilting position at 70o (T2) and

other 5 minutes of recovering in supine position (T3). From

the ECG recording (sampling rate Fs=1 KHz), instanta-

neous HR was obtained using a method based on the in-

tegral pulse frequency modulation model [5].Noninvasive

blood pressure was recorded using a Finometer (Fs=250

Hz) and respiratory rate was estimated using a sensor belt

(Fs=150 Hz). SP values were measured as the local max-

imum of the blood pressure signal within the RR inter-

vals. All signals were resampled at 4 Hz. In the signal-

dependent kernel design, the respiratory rate is used to ap-

proximate FHF(t) and parameter a, λ and k are 0.01, 0.25

and 0.002 respectively. Band coherences γLF(t) and γHF(t)
were extracted by averaging γ(t, f ) in a spectral band B(t)
of 0.1 Hz centered around the maximum of the TF cross

spectrum in LF [0.04:0.15] and HF [0.15:0.5] ranges.

3. Results and discussion

3.1. Simulation for assess accuracy

Figure 3. Type I: bias (a) and SD (b).

The methodology for estimating TFC has been tested in

six different situations, using the signal-dependent QTFD

described above. Results of case I and of case II are shown

in Fig 3 and 4. In simulations of case I, bias is very low

(< 0.05) for γ0,B >0.5, while standard deviation is always

small. In simulations of case II, the estimator performs

very well for gradual and slow coherence changes (Fig.

4a). In case of abrupt changes (Fig. 4b) the estimator takes

few seconds to properly adjust to the new values, while

when short decorrelating events appear (Fig 4c) the esti-

mator is able to correctly localized them, even if with a

higher bias. It is worth to note that better results could

be achieved by manually adjusting the parameters of the

smoothing kernel to each specific situation, but this re-

quires a-priori knowledge of TF signals structure, which

in real cases it is often not available.
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Figure 4. Type II: tracking capability. Gray lines: γ0,B(t),
black and dotted lines: mean trend ± SD of γB(t)

Figure 5. a): black γ(t, f )=1, white γ(t, f )=0; b): band

coherences γLF(t) and γHF(t); c): γ( f )

3.2. Real application

In Fig 5, a representative example of γ(t, f ) estimation

is shown. Vertical lines mark the tilting movement of the

automatic bed, first upward (from T1 to T2) and then down-

ward (from T2 to T3). During T2 TFC is higher than during

T1 and T3 indicating that, as response to orthostatic stress,

the HRV-SPV linear coupling increases. This trend is ob-

served in all subjects but one, being particularly clear in

those subjects with low respiratory rate (< 0.2 Hz). The

median trend, computed over the 15 subjects, of γHF(t) and

γLF(t), is shown in Fig 6a and 6b, respectively. The changes

in band coherence are evaluated comparing its median val-

ues, computed over time in T1, T2 and T3: results of T Stu-

dent’s test are shown in table 2. During tilting, the TFC

increase in LF is significant with respect to both T1 and T3.

Bigger differences are observed between γLF(T2) and γLF(T3)
than between γLF(T1) and γLF(T2). Statistical differences be-

tween γLF(T1) and γLF(T3) are not significant. In HF band,

the median trend of TFC is slightly lower than in LF. A sig-

nificant increase in γHF(t) is also observed during tilting.

Figure 6. median trend of (a) γHF(t) and (b) γLF(t)

Table 2. Statistical differences of γB(t)(t) [p-values]

B(t) T1-T2 T2-T3 T1-T3

LF 0.02 0.001 0.28

HF 0.04 0.02 0.83

4. Conclusion

In this communication a methodology for continuously

quantifying the linear coupling of cardiovascular interac-

tions using QTFD has been presented. Its reliability and

robustness have been assessed quantifying bias, variability

and tracking capability of the estimator in different physio-

logical situations. An application aiming at tracking SPV-

HRV coupling during orthostatic stress shows that during

tilting TFC increases in both LF and HF band.
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