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Abstract 

A novel measure of the morphological beat-to-beat 

variation of signals derived from multichannel ECG is 

presented. It is used to find an optimal linear functional 

that maps the electrical activity of the heart into a single 

virtual lead in the sense of least beat-to-beat variability. 

The results show that for each subject it is possible to 

find a virtual lead with less beat-to-beat variability 

compared to the standard ECG-leads. Furthermore, the 

new measure gives precise quantitative information about 

the beat-to-beat variability in the standard lead set. 

1. Introduction 

It can be argued that the first step in electrocardiogram 

(ECG) processing is selecting a suitable representation 

for the data. This choice guides the placement of the 

electrodes and the derivation of the actual leads as 

functions of the potentials at the measurement sites. 

The problem of selecting a suitable set of multiple 

leads has been studied especially in the viewpoint of what 

reduced lead set produces the best reconstruction of the 

body surface potentials (e.g. traditional 12-lead ECG) or 

one that maximizes the information content of the lead 

set [1-3]. 

In ambulatory measurements, simultaneous processing 

of several individual measurement channels with an 

embedded device is often infeasible. Therefore, it is often 

required that either the system must restrict to work on a 

single lead or map the measured leads into a virtual single 

channel signal that is used in later processing stages. 

For some applications, it is desirable to have a signal 

that retains as much of the original information as 

possible despite the fact that this can lead to more 

heterogeneous morphology, e.g. due to respiration and 

movement artifacts. In other applications, we would like 

the signal to be as consistent as possible showing little 

beat-to-beat variability. For instance, the latter approach 

could be especially beneficial in ECG segmentation, 

since the quality of the segmentation can have a profound 

effect on the quality of later analysis [4, 5]. 

In this paper, we present a preliminary study that 

quantifies the morphological beat-to-beat variability of 

virtual leads calculated from multichannel ECG when 

using a linear model. 

The rest of the paper is organized as follows. First, we 

describe the methods and the data in section 2. Then, the 

results are presented in Section 3. Finally, discussion and 

conclusions are presented in section 4. 

2. Methods and materials 

2.1. Constructing the virtual signal 

The electric field generated by heart can be modeled 

with good accuracy using a dipole model in which the 

strength and orientation of the source vary in time [6]. 

This behavior can be captured using the electric heart 

vector (EHV) which is a mapping 酸: 温 蝦 温3 such that 酸(嗣) = [姉(嗣) 姿(嗣) 子(嗣)]参 

where 捲, 検, 権 are the real-valued component functions 

that represent the source strength with respect to the 

corresponding axes at each time instant. 

Using the EHV model, the task of finding a derived 

lead can be formulated mathematically. We seek a 

functional 畦建 : 温3 蝦 温: 酸(建) 簿 (畦建酸)(建) = 懸(建) with 

suitable properties. 

In order to obtain a meaningful signal, we must fix the 

sense in which the functional 畦建  is to be sought. To 

narrow the scope, we restrict to time-invariant functionals 畦建 = 畦 in this paper. In addition, we require that 畦 is a 

linear functional. 

According to the Riesz Representation Theorem for 

finite dimensional vector spaces [7], a linear functional 

operating on 酸 can always be expressed as  

(畦酸)(建) = 始劇酸(建) 

where the constant vector 始 = [拳1 拳2 拳3]劇 樺 温3 is 

often called a lead vector on which the EHV can be 

interpreted to be projected on. Without loss of generality, 

we can further restrict 始 to be a unit vector. 

Lead switching/selection algorithms [8] can be seen as 

examples of time-variant functionals where 畦 is restricted 

to linear form and at each time instant 建, and 始 to be 
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selected as a row vector of the Dower matrix [9]. In 

addition, some specific non-linear functionals have also 

been used. For example, the root-mean-square (RMS) of 

the measured leads has been found useful [10]. 

It should be noted that the presentation is not restricted 

to the EHV model only, but any other multidimensional 

presentation of the electrical activity may used as well. 

2.2. Optimality of the virtual signal 

In order to select 畦 optimally, we must device means 

to measure the optimality. Hence, consider a sampled 

version of the derived signal (畦酸)(建) during a beat 建 樺 [欠件 , 決件]. For each beat from a totality of 軽 beats, let 

the samples be collected into a vector 姉件 樺 温警  , 件 =

1, . . . , 軽, which is zero padded in case the beat is shorter 

than the predetermined duration of 警 samples. 

Then, let us define the mean shape of the beat as  侍赴 = arg min侍 1軽布穴酵2(姉件 , 侍)

軽
件=1

 

where 穴酵(姉件 , 侍) = min酵 押酵 萱 姉件 伐 侍押 

is the distance between the mean shape candidate 侍 and 

the ith beat 姉件  when they are aligned in time as close to 

each other as possible using the cyclic interpolation 

operator 酵. For a more general multidimensional 

exposition of these concepts, please refer to [11]. 

Finally, let us define the objective function 蛍(始) =
デ 穴酵2(姉件 , 侍赴)軽件=1デ 懸欠堅(姉件)軽件=1

. 

where 懸欠堅(姉件) = デ 盤捲件倹 伐 捲件倹博博博博匪2警倹=1  represents the AC-

energy of the derived signal during the beat. Clearly, the 

objective function is non-negative. Moreover, it possesses 

several other desirable properties. First, it is invariant to 

isotropic scaling, i.e. 蛍(始) = 蛍(嫌始) for all 嫌 塙 0. 

Second, the larger the value of the objective function is, 

the larger the beat-to-beat variation in the derived signal 

is. Third, the lesser the signal energy is, the higher the 

value of the objective function is. The objective function 

is also continuous and smooth. Hence, the minimum 

(min始 蛍(始)) can be sought with standard numerical 

methods. 

2.3. Data 

ECG measurements were gathered in different body 

positions and respiration depths. In total, there were 25 

healthy volunteers between 19 to 53 years old. Ten of 

them were females and 15 of them were males. 

The measurements were made with RAFE lead 

system [12] using a Medilog AR12 Digital ECG 

Recorder (Oxford Instruments, Eynsham, UK). The 

amplitude resolution of the three stored Frank leads that 

are proportional to the EHV [13] was 16 bits at sampling 

rates 1024 Hz (X), and 512 Hz (Y, Z). Afterwards, the X 

channel was resampled at a rate of 512 Hz. 

The recordings lasted for 18 minutes per person. In the 

course of the measurement, body position and respiration 

depth was controlled by the instructor who gave orders  at 

predefined time instants seconds before each action were 

to take place. A timer was used to initiate the execution 

an exact time instant. For a detailed measurement 

protocol, please see [11].  

After measurements, the beats were extracted using 

our implementation of the shift invariant wavelet 

transform based segmentation algorithm presented in 

[14, 15]. As a post-processing step for each beat, a linear 

trend was subtracted from each of the Frank leads to 

remove baseline wander. 

3. Results 

For comparison, the beat-to-beat variability of the aVL 

lead for the first subject is represented in Fig.1. At each 

instant, a curve shows the corresponding percentile 

distribution of data points, when all the beats have been 

aligned on top of each other optimally. Percentiles 

ranging from 10 % to 90 % with 10 % intervals are used.  

The beat-to-beat variability in the optimal lead using 始赴 = arg min押始押=層 蛍(始) is shown in Fig. 2 for the first 

subject. Overall, the aVL lead in Fig. 1 has 54 % more 

variation compared to this optimal location (see Table 1). 

When 始 is a unit vector in 温3, it belongs to the unit 

sphere that can be parameterized with two angles: the 

elevation 肯 樺 [伐講 2エ , 講 2エ ], and the azimuth 剛 樺
[伐講, 講]. We use three axes, where X-axis points forward 

out of the chest, Y-axis points to the left, and Z-axis 

points up towards the head. The elevation 肯 is the angle 

between the direction vector and the XY-plane, counting 

Figure 1. Beat-to-beat variation in the aVL lead of the 

standard 12-lead ECG for the first subject.

Figure 2. Beat-to-beat variation in the optimal virtual lead 

for the first subject. 
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positive towards the positive Z-axis. The azimuth 剛 is the 

angle between the projection of the direction vector on 

the XY-plane and the X-axis with the counter-clockwise 

convention for positive angle. Due to scale invariance, 

the symmetry 蛍(始) = 蛍(伐始) becomes 蛍(剛, 肯) =蛍(剛 ± 講, 伐肯) in the spherical coordinate system. 

Fig. 3 shows the objective function 蛍(剛, 肯) as a contour 

plot for each person in the spherical coordinate system 

ordered by person number first from left to right, and 

then top to bottom. The function takes on a given 

constant value on each line. Minima of the objective 

function and the locations of the standard leads according 

to the Dower matrix are also shown. The symmetry 

property of the objective function is evident from the 

contour plots. It can also be seen that in many cases some 

of the standard leads show significant beat-to-beat 

variation according to the objective function. 

Table 1 compares the amounts of variation at the standard 

leads to that of the minima, i.e. shows the values 蛍(始餐) min始 蛍(始) × 100 %エ , where 始餐 is a row vector of 

the Dower matrix. 

 

 Figure 3. Contour plots of the objective function. The 

dots (Ɣ) represent the lead locations of the standard ECG, 

and the crosses (×) represent the optimal locations. 

Table 1. The amounts of variation at the standard ECG leads relative to the optimal virtual lead in per cent units. 

Person I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 

1 135 477 206 239 154 308 304 115 103 112 137 214 

2 630 145 418 127 823 242 200 157 161 178 237 575 

3 447 273 196 664 279 164 475 102 183 316 490 788 

4 114 463 234 131 166 342 398 163 126 110 101 107 

5 104 944 293 228 174 524 285 140 113 104 103 111 

6 125 181 158 143 142 172 297 123 102 102 115 166 

7 181 377 339 164 278 381 563 244 185 150 135 169 

8 264 111 149 125 180 129 168 167 182 202 248 446 

9 176 368 311 158 243 380 361 134 103 103 131 295 

10 111 335 202 136 154 265 1561 195 126 107 100 107 

11 128 198 152 159 136 173 438 139 104 102 120 196 

12 100 502 149 207 118 214 1874 241 145 117 106 115 

13 138 1110 287 252 180 561 242 116 102 108 132 234 

14 169 212 228 146 208 234 584 155 111 110 133 232 

15 143 440 332 115 217 559 1009 277 148 106 107 233 

16 177 303 373 121 281 424 272 138 114 109 124 251 

17 208 253 366 129 328 343 778 212 127 112 132 243 

18 103 119 102 145 101 106 325 123 105 101 106 134 

19 102 381 176 163 131 251 728 201 133 112 104 107 

20 135 689 322 121 217 500 787 222 148 118 107 138 

21 334 207 284 176 314 253 125 125 147 177 246 659 

22 140 179 176 112 164 184 337 159 134 123 122 142 

23 237 380 402 150 338 439 223 148 143 146 167 277 

24 277 111 167 148 204 139 166 148 180 216 266 369 

25 312 287 322 256 327 310 155 110 101 114 200 1071 
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4. Discussion and conclusions 

We have presented a novel way of measuring the beat-

to-beat variation of signals derived from ECG in a 

general setting. In particular, we have focused on finding 

the optimal linear functional that maps the electrical 

activity of the heart into a single virtual lead in the sense 

of least beat-to-beat variability. According to the results 

(Table 1), some of the precordial leads (on the chest) are 

often close to optimal, but individual variations are large. 

The main advantage of the new method is the scale 

invariance compared to standard RMS-type measures that 

typically show little variation in leads with lower signal 

levels, and larger variations with higher signal levels. In 

this respect, our method reveals the intrinsic variability of 

the signal irrespective of scale. It can be argued that this 

type of approach is favourable in comparison to direct 

application of methods that maximize the information 

content, such as entropy or variance, as they can lead to 

the inclusion of unwanted information sources and 

excessive beat-to-beat variation. 

A disadvantage of the method is that the objective 

function does not differentiate a source of the beat-to-beat 

variability from another. The source may be anything 

from e.g. perspiration, respiration, movement artifacts or 

electromyographic noise to actual changes in the heart. 

Therefore, the method is sensitive to the selection of the 

data. The very same property, however, makes it very 

well suited to ambulatory conditions in which situations 

can change rapidly. 

The method can be used to guide the electrode 

placement. Naturally, a direct measurement at the optimal 

location can be impractical, e.g. due to a local source of 

electromyographic noise. Nonetheless, the optimal signal 

can be derived from leads at more advantageous 

locations. This can be accomplished already in the 

analogue stage of the measurement device with little cost. 

The methods presented can be expanded in a number 

of directions. For example, the requirements imposed on 

the functional can be relaxed by allowing it to vary in 

time and/or be non-linear. What is more, many other 

types of distance measures can be explored to redefine 

the objective function suitably. Further, an online version 

of the method could be applied to grid type ECG, e.g. in 

sensory shirts, to fuse information measured from a 

multitude of locations forming a stable signal even 

though the contact and placement of the electrodes vary. 
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